
SCMA: A Lightweight Tool to Analyze Swift
Projects

Fazle Rabbi
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

bsse0725@iit.du.ac.bd

Syeda Sumbul Hossain
Department of Software Engineering

Daffodil International University
Dhaka, Bangladesh

syeda.swe@diu.edu.bd

Mir Mohammad Samsul Arefin
Information Engineering

Chalmers University of Technology
Gothenburg, Sweden
s.arefin@outlook.com

Abstract—In global software engineering, practitioners use
code metrics analyzers to measure code quality to detect code
smells or any technical debt early at the development phase.
Different tools exist to evaluate these metrics to ensure the
maintainability and reliability of any codebase. This paper
presents a tool SCMA (Swift Code Metrics Analyzer) which
analyzes swift code considering ten code metrics for analyzing
software architecture to ensure code quality. We have used the
native swift parser to implement this tool. This tool suggests
refactoring the codebase by giving a final score averaging the
score of all ten metrics. We have validated the accuracy of each
metric measured by this tool by analyzing the codebase manually.
This tool can help the developers to inspect the swift modules of
iOS projects and give an insight into the improvement area of
each project.

Index Terms—Code metrics, Code Metrics Analyzer, Swift
Language, Code Quality, Code Smell

I. INTRODUCTION

Nowadays, software companies are evaluating their projects
in terms of different software metrics. These metrics are
categorized into three different types- Process metrics, Project
metrics, and Product metrics [3]. These metrics are evolving
to measure the software development processes to enhance
the development models. Numerous studies further have been
done on these metrics. A systematic mapping study [4] has
been done on software process metrics where process metrics
had categorized into three different types. Software Product
metrics are also studied over time which is stated in another
mapping study [1]. Among those metrics, product metrics
define product quality. Source code metrics are one of the
product metrics that helps to measure the code quality of any
codebase [8]. There are around 300 code metrics found [8] in
different literature.

Clean architecture becomes a buzzword among the software
engineering practitioners motivated by R. Martin (uncle Bob)
[7]. To ensure the code quality, architectural analysis of the
codebase is crucial to avoid code smells or any other technical
debts. There are different types of code smells are stated in
different literature. These code smells tends to code refactoring
[2].

This paper presents a tool SCMA (Swift Code Metrics
Analyzer) which analyzes swift code considering ten code

DOI reference number: 10.18293/SEKE2022-006

metrics for analyzing software architecture to ensure code
quality.

The rest of the paper is organized in accordance: Back-
ground Study at Section II followed by Tool Description and
Discussion at Section III and Section IV respectively. We
have reviewed the validity of our study in Section V. Finally
Section VI furnishes our contribution.

II. BACKGROUND STUDY

A. Technical Debt (TD)

Technical debts are short-term benefits that occurred by
the software engineers unintentionally throughout the software
development processes. There are different types of technical
debts stated in studies. A systematic mapping study [6] had
been done on 94 studies where technical debt is classified
into 10 different types as Requirements TD, Architectural TD,
Design TD, Code TD, Test TD, Build TD, Documentation TD,
Infrastructure TD, Versioning TD, Defect TD. This paper also
stated that Code TD had studied most.

B. Code Metrics

Code metrics are being used to get the insight of source code
written by the developers in terms of some measurement units.
As these metrics reveal the code health of any codebase at the
development phase, practitioners can easily get the idea of
improvement areas of their codebase. Considering the nature
of projects and processes in global software development,
practitioners are using different code metrics. Kitchenham, B.
[5] had conducted a preliminary mapping study on software
metrics. A systematic mapping study [8] has been done on
software code metrics where a total of 226 studies have
been gone through to map almost 300 code metrics of 13
different programming languages (Java, AspectJ, C++, C, C#,
Jak, Ada, Cobol, Javascript, Pharo, PHP, Python, and Ruby).
This study also summarizes 41 different software metrics
tools into two categories: commercial tools which are free
or paid tools and others that are developed by the authors.
Another systematic mapping study [9] had been performed on
dynamic software code metrics which illustrated that coupling,
cohesion, complexity, method invocation, memory allocation
and usages were mostly focused research topics.



C. Tool used within our organization

In our organization we are using our own tool, to measure
the different code metrics associated with their organization.
This tool summarizes a score using the code metrics of
LOC (Line of Code), Global Variables, Predefined processors,
Cyclomatic Complexity, Duplicate Code, and Modular Circu-
lar Dependency. This tool supports projects with languages
like Java, C, C++, C# excluding iOS supported languages,
especially swift. To be aligned with the organization’s coding
culture, we are motivated to develop a code metrics analyzer
that supports swift language.

D. Code Metrics Tools for Swift

Swift language has evolved later in 2014 and becomes more
popular for iOS development. Clean Swift 1, a set of rules, is
introduced with XCode for maintaining better architecture for
swift projects. As per the best of our language, there are a
few software code metrics tools that exist for swift language
which measures some basic code metrics. SonarSource 2 is a
static analyzer that checks 119 predefined rules for swift lan-
guage which covers unique rules to find Bugs, Vulnerabilities,
Security Hotspots, and Code Smells in SWIFT code. It also
supports other 26 languages and has specific rule sets based
on the languages.

Code Climate 3 is a repository-based metric analyzer for
swift language that checks duplication, cognitive and cyclo-
matic complexity and some others basic checks.

Swift Code Metrics is another tool for swift projects 4 by
which some basic code metrics (the overall number of concrete
classes and interfaces, the instability and abstractness of the
framework, the distance from the main sequence, LOC (Lines
Of Code), NOC (Numbers Of Comments), POC (Percentage
Of Comments), NOM (Number of Methods), Number of
concretes (Number of classes and structs), NOT (Number Of
Tests), NOI (Number Of Imports), and Frameworks depen-
dency graph (number of internal and external dependencies))
can be analyzed.

Taylor 5 is another tool for analyzing swift code which
considers the code metrics Excessive Class Length, Excessive
Method Length, Too Many Methods, Cyclomatic Complexity,
Nested Block Depth, N-Path Complexity, and Excessive Pa-
rameter List. SwiftLint 6 checks over 200 rules, including 12
code metrics for swift languages.

III. TOOL DESCRIPTION

In this section, we presented the overall activities of our
tool from parsing source codes to generating html reports. The
score calculation method from metrics is also shared.

1https://clean-swift.com/
2https://rules.sonarsource.com/
3https://codeclimate.com
4https://github.com/matsoftware/swift-code-metrics
5https://github.com/yopeso/Taylor
6https://github.com/realm/SwiftLint

A. SOURCE CODE PARSING

At the very beginning, the source code files with .swift
extensions are selected from a project. The contents are read
one by one and converted into Abstract Syntax Trees (AST).
To parse these files and AST preparation, SwiftSyntax 7 is
used as a parser. Each of the AST contains a class, methods
under the class, global variables and variables under methods,
and other elements from a source code file as branches in
hierarchy order. Figure 1 illustrates the parsing procedure of
source codes.

Fig. 1. Source Code Parsing

B. METRICS DETAILS

After ASTs are generated from source code files, infor-
mation such as class names, lines of codes, method names,
variables names are collected from the ASTs. From that
information, a call graph matrix is prepared for a project where
every node (methods, variables) is linked to other nodes with
whom they have a connection. Each of the properties as well
as each of the relations in a project is considered to calculate
metrics. After this step, the following metrics are captures.
For every metric, a violation count is considered. To keep
the project well managed and keep the score good, violations
must be avoided. The metrics to be considered with their brief
details in SCMA tool are as follows:

1) Line of Code by Classes (LOCC): Total line of code
without comments in a class are considered the first
information to be used as a metric. More lines in a class
hampers the maintaining activities and we considered it
as a negative impact to our score calculation.

2) Weighed Method Count by Classes (WMCC): Sum-
mation of Cyclometic complexities of all methods in a
class. Classes with high Weighted Method Count have
less readability.

3) Number of Methods by Classes (NOMC: Count of
methods in a class. More methods in a class increases
the complexity in a class. The number of methods should
be kept low.

4) Number of Global Variables by Classes (NOGC):
Count of global variables in a class. Number of Global
Variables must be kept as low as possible to make a
good score by the tool.

7https://github.com/apple/swift-syntax



5) Number of Couplings by Classes (NOCC): A Cou-
pling is considered when two classes have at least
one mutual connection in any direction. This metrics
represents the number of total couplings in a project.
To maintain a good readability, couplings should not be
presented very high between classes. Low number of
couplings will help to make a good score.

6) Number of Accessed Methods by Variables (NOAV):
Total number of accessible global variables inside a
method. More usage of global variables by methods
increases the cohesion and contributes to the score.

7) Line of Code by Functions (LOCF): Total line of code
in a method body. As like LOC for classes, LOC for
function also should be kept as low as possible.

8) Cyclomatic Complexity by Functions (CCF): The
quantitative measure of the number of linearly indepen-
dent paths through a program’s source code. To keep
good readabilities, cyclometic complexity must be small
in number.

9) Number of parameters by Functions (NOPF): Num-
ber of total parameters in a method signature. It should
be kept as low as possible.

10) Duplicate Code (DC): Same lines of code between two
or more methods/class/blocks introduces code duplicacy.
Duplicate codes are generated by copying and pasting
codes and they introduce bugs while editing the codes
later. In our tool we use lizard8 to count the duplicate
blocks of codes.

The overall procedure of this step is shown in Figure 2

Fig. 2. Metrics Calculation

C. SCORE CALCULATION

In this section, the score calculation from metrics is de-
scribed briefly. Table III-C illustrates the details of violations
and formula we used for score calculation. From each of the
metrics we get a score ranging from 0 to 5. Using all of these
scores, a final score is calculated by averaging the values of
these scores. Alike the individual scores from metrics, the final
score is also remains from 0 to 5. Score close to 5 represents
the project as good conditioned close to 0 means the project
contains smells which needs to be refactored.

D. REPORT GENERATION

At the final step after metrics calculation, a report needs to
be generated. To generate a report, an HTML page is generated

8https://github.com/terryyin/lizard

TABLE I
SCORE CALCULATION FROM METRICS

Metrics Violation Score

Line of Code
by Classes

over
500
lines

Score = 1000
maxLOC+1500

Weighed
Method
Count by
Classes

over
200
count

R = maxWMC∗violations
totalWMC ;

Score = 2
R+0.4

Number of
Methods by
Classes

N/A Score = 500
maxmethodsinaclass+75

Number
of Global
Variables by
Classes

N/A Score = 500
maxGlobalsinaclass+75

Number of
Couplings by
Classes

N/A Score = 1000
maxcoupling+150

Number of
Accessed
Methods by
Variables

N/A Score = 2
methods/globals+0.4

Line of Code
by Functions

N/A Score = 2000
maxLOC+300

Cyclomatic
Complexity
by Functions

over
20
count

R = maxCC∗violations
totalCC ; Score
= 2

R+0.4

Number of
parameters by
Functions

over
10
params

R = maxParm∗violations
totalParms ;

Score = 2
R+0.4

Duplicate
Code

over
10
lines

R = duplicatedlines∗totallines
totalParms ;

Score = 2
R+0.4

through a python server. In that report, the summary of every
metrics is illustrated. Users can also get the details from a CSV
file for the corresponding metric. From each of the metrics
(See Figure 3), a score (0 to 5) is calculated from the violation
count for few metrics.

After that, an overall score is calculated using the average
value from all of the metrics scores. Figure 4 illustrates an
output of the overall score.

IV. DISCUSSION

The proposed tool (SCMA) is developed considering the
standard of global SW engineering tools, internal organiza-



Fig. 3. Individual Metrics Score

Fig. 4. Final Score

tion’s guildlines and expert opinions. There is some resem-
blance and dis-resemblance exit among the metrics calculated
by different tools. Modular Circular Dependency (MCD) and
Predefined Preprocessor Metrics are not considered in this
tool as they are not compatible with swift. Table II illustrates
SCMA tool specification.

TABLE II
SCMA TOOL

Key SCMA
Language Swift
Scoring 0-5
Build Dependency No
Report CSV, HTML

V. THREATS TO VALIDITY

a) Internal Validity: We have built this tool based on the
code metrics that are being considered within our company.

b) External Validity: For analyzing the result of our tool,
we have not considered any other open-source projects as we
could not trace the changes in metric scores.

c) Construct Validity: We considered the scoring formula
and threshold values used as standards of global software
engineering and our company. After having the scores from

every sections, we calculate the overall score by averaging the
individual scores of all of the metrics.

d) Reliability: We have run our tool on 11 iOS based
software projects. All the applications are from real-life
projects available on the app store. After the first run, we
have run this tool several times after refactoring the code as
per the suggestions provided by our SCMA tool.

VI. CONCLUSION

In this paper, we proposed a tool named SCMA to au-
tomatically score a swift project using ten software code
metrics. We run this tool on swift-based software projects
of our company and manually validated the result for some
cases. To our knowledge, this tool provides valid output. The
violation counts used here are chosen from the global code
smell standards, our internal organization’s guidelines and
expert opinions. Currently, we are working with other metrics
and we will adapt those in our future work.

REFERENCES

[1] Colakoglu, F.N., Yazici, A., Mishra, A.: Software product quality metrics:
A systematic mapping study. IEEE Access (2021)

[2] Fowler, M.: Refactoring: improving the design of existing code. Addison-
Wesley Professional (2018)

[3] Honglei, T., Wei, S., Yanan, Z.: The research on software metrics and
software complexity metrics. In: 2009 International Forum on Computer
Science-Technology and Applications. vol. 1, pp. 131–136. IEEE (2009)

[4] Hossain, S.S., Ahmed, P., Arafat, Y.: Software process metrics in agile
software development: A systematic mapping study. In: International
Conference on Computational Science and Its Applications. pp. 15–26.
Springer (2021)

[5] Kitchenham, B.: What’s up with software metrics?–a preliminary map-
ping study. Journal of systems and software 83(1), 37–51 (2010)

[6] Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical
debt and its management. Journal of Systems and Software 101, 193–220
(2015)

[7] Martin, R.C.: Clean architecture: a craftsman’s guide to software structure
and design. Prentice Hall (2018)

[8] Nuñez-Varela, A.S., Pérez-Gonzalez, H.G., Martı́nez-Perez, F.E.,
Soubervielle-Montalvo, C.: Source code metrics: A systematic mapping
study. Journal of Systems and Software 128, 164–197 (2017)

[9] Tahir, A., MacDonell, S.G.: A systematic mapping study on dynamic
metrics and software quality. In: 2012 28th IEEE International Conference
on Software Maintenance (ICSM). pp. 326–335. IEEE (2012)


	Introduction
	Background Study
	Technical Debt (TD)
	Code Metrics
	Tool used within our organization
	Code Metrics Tools for Swift

	Tool Description
	SOURCE CODE PARSING
	METRICS DETAILS
	SCORE CALCULATION
	REPORT GENERATION

	Discussion
	Threats to Validity
	Conclusion
	References

