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Abstract—The combination of pre-trained language models
(LM) and knowledge graphs (KG) can enhance the reasoning
ability for Question Answering. However, previous methods
typically fuse the two modalities in a shallow or knowledge-
draining manner, not taking full advantage of the knowledge
representation of both. How to effectively fuse the different
knowledge representations is still a problem of current research.
In our work, a novel model is proposed that fuses LM modal
knowledge representations and graph neural network (GNN)
modal knowledge representations deeply over multiple layers
of modality interaction operations. Specifically, the model
includes an information interaction unit, through which KG
and LM knowledge can be transferred between modalities to
realize knowledge fusion directly, reducing information loss.
In addition, we add the context node of implicit knowledge
from LM encoding in the construction of the reasoning
subgraph in advance for enhancing the reasoning of the GNN.
We evaluate our model on two domains in the biomedical
benchmark (MedQA-USMLE) and commonsense benchmarks
(OpenBookQA and CommonsenseQA). Experimental results
show that our model achieves a particular improvement over
existing LM and LM+KG models for reasoning over both
situational constraints and structured knowledge.
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I. INTRODUCTION

Question Answering is a challenging task for complex ques-
tions because it often contains multiple subjects, relations, and
implicit background knowledge, and currently, the hot Chat-
GPT model is also conducting relevant research. Generally,
knowledge can be encoded implicitly in a large unstructured
pre-trained language model (LM) [1], or explicitly represented
in structured knowledge graphs (KGs), such as ConceptNet
[2]. Recently, the fine-tuning of large pre-trained language
models generated by training on large text corpora on QA
datasets has made great progress and has become the dominant
paradigm for question-answering tasks [3], [4]. However, pre-
vious models are flawed in structured reasoning because they
rely only on simple patterns (at times spurious) to reason about
answers, rather than strong, structured reasoning that fuses
explicit encyclopedic knowledge with implicit knowledge [5].

DOI reference number: 10.18293/SEKE2023-023

In other words, existing pre-trained language models for fine-
tuning is the lack ability to exploit unambiguous encyclopedias
and commonsense knowledge for reasoning [6].

Previous studies have shown that KGs are suitable for
structured reasoning and play an essential role in structured
reasoning (e.g., providing background knowledge) [7]–[9].
Therefore, extensive research exists to carefully design graph
neural networks (GNN) to obtain answers by retrieving knowl-
edge subgraphs, paths related to a given question by string
matching, or semantic similarity or inference after model-
ing the retrieved subgraphs [10], [11]. However, using these
inferences to retrieve graphs can introduce noise and limit
the ability of models to effectively utilize both knowledge
representations for reasoning [12].

Fig. 1: The left graph is based on context entities, while
the right graph shows the result after inference. "Int" is a
token used for knowledge exchange. Different node types are
represented by colors that alternate during knowledge fusion.
However, GNN may lose information during propagation,
resulting in the inability to obtain distant information, as seen
in the red box lacking Choice Entity knowledge.

To leverage the background knowledge provided by KGs
to enhance LM representations, previous approaches com-
bine these two models’ representations (i.e., expressive large
language models and structured KGs) to improve inference
performance [10], [13]. However, these methods typically fuse
the two modalities in a shallow and non-interactive manner,



encoding both separately and combining them at the output
for a prediction, or using one to augment the input of the
other [11], [14], which limits the ability to exchange useful
information between the two models. Latest research [14]
attempted to fuse these two models’ representations by tokens,
but it assumed that the GNN knowledge could be learned
and aggregated to fixed token nodes, and ignored the problem
of information loss during iterative message passing between
neighbors on the graph (see Figure.1, the nodes enclosed by
the red frame may lose the knowledge of choice entity nodes
after reasoning). How to effectively fuse the representations
from KG and LM remains an important open question.

To address the above issues, we propose a Language Models
and Graph reasoning Fuse deeply for question answering
model (LMGFuse) as shown in Figure 2, a new model which
can deeply integrate and exchange the two model represen-
tations in multi-layer architecture for multimodal fusion. Our
proposed LMGFuse is mainly composed of two parts: one is
the pre-trained language model to encode and understand the
QA context; the other is the modal interaction of attention-
based GNN and LM for joint reasoning. The former is to
generate implicit background knowledge of the context, and
the latter is to fuse implicit knowledge and explicit knowledge
for reasoning. Referring to previous studies [11], we use the
LM to encode the QA context to generate implicit knowledge,
and combine this knowledge with the QA context entities to
retrieve a KG subgraph following prior works [13]. After that,
the LM knowledge representation and subgraph are fed into
the model fusion layer, which will fuse the token node infor-
mation output by the LM encoder with all node information
in GNN. Through these layers, each node of the subgraph can
learn the knowledge from LM directly, and the LM encoder
can also learn the subgraph knowledge, reducing knowledge
loss. Meanwhile, to reduce the number of parameters in modal
fusion, dimension reduction of parameters is carried out by
factoring, improving also the efficiency of the operation.

The contributions of this paper are three-fold: (1) an innova-
tive approach to achieve knowledge representation fusion be-
tween LM and GNN, (2) innovative use of reasoning subgraph
construction and parameter reduction techniques in question
answering, (3) the experimental results on two domains with
three datasets (CommonsenseQA [15], OpenBookQA [16] and
MedQA-USMLE [17]) are better than the existing LM and
LM+KG fusion models.

II. RELATED WORK

There are two main research methods for QA systems under
complex problems in prior work: semantic parsing-based (SP-
based) and information retrieval-based (IR-based) [18], [19].
SP-based reasoning methods based on the fusion of LM and
GNN knowledge representations have made great progress and
become a hot research topic. Some works use two-tower to
fuse the representations, but they lack contralateral information
interaction or have information loss [20]. Others attempt to use
one pattern to enhance the other serially, such as using the
last layer of the LM knowledge representation to enhance the

GNN structured representation or using the GNN structured
representation to heighten the context representation [10],
[13], [21]. However, in previous works, the interaction mode
between the two models was limited, because the information
between them could not be interacted and fused, but only
flowed in one direction [14].

Several studies aim to fuse information from two models
at a deeper level. Some of these works [22] use LM implicit
knowledge combined with GNN model structured reasoning
to construct QA data for inferencing. However, these methods
focus too much on the reasoning of implicit knowledge.
Recently, GREASELM [14] and QA-GNN [11] proposed
updating the LM representations and GNN representations
jointly through message passing. Nevertheless, their method
of jointly updating knowledge representations does not handle
it well: QA-GNN uses single-pool representations without
deep fusion, and GREASELM updates the representation with
information loss. In our work, we keep the token node rep-
resentation of the LM and the graph node representations for
deep fusion and use this token node to exchange information
with each node in the graph reducing information loss.

In addition, some studies have explored ways to enhance the
representation of LM with explicit knowledge from KG in the
pre-training stage. However, this modal interaction is limited
to the knowledge representation provided [23] and does not
fully utilize the structured reasoning ability of the two modes.

III. APPROACH: LMGRFQA

As shown in Figure 2, the input to the model is the QA
context [q: a] concatenated between question q and candidate
answer a. LMGRFQA works as follows. First, we use LM
encode representations of QA context as context nodes and
retrieve KG based on QA context entities to build subgraphs
containing implicit knowledge. Then, before modal fusion,
we use an N-layer LM encoder to the QA context for easier
knowledge modal transfer through token nodes later in the
first modal interaction layer. In modal knowledge fusion, we
maintain the independent structures of LM and GNN and use
the designed Exchange GNN and LM’s Int token representation
unit (EXGLInt) to cross-fusion after each layer to update
the knowledge representation obtained by each model. After
multi-layer interaction, each node representation can learn the
knowledge representation of two modalities. Finally, we make
a final prediction using the LM token node representation
and GNN node representations through the pooling and MLP
layers.

A. Subgraph Construction

In the process of subgraph retrieval and construction, given
a [q: a], we retrieve a KG subgraph following prior works [13],
[14] and follow the settings of [11] to divide subgraph nodes
into four categories: question nodes, option nodes, context
nodes, and other knowledge nodes, respectively (correspond-
ing to the node color, green, purple, pink and blue in the
subgraph of Figure 2) to capture the strength of association
between two nodes. We set up implicit knowledge of the QA



Fig. 2: Overview of LMGFuse Architecture. Given the QA context, we use LM to encode entity nodes and build subgraphs for
inference. Then, LM is used to update implicit knowledge representation, and GNN is used to update knowledge representation
and use a modal interaction to conduct knowledge fusion after each layer of LM and GNN.

context as the subgraph one node by pooling and joint in
advance for enhancing the reasoning of GNN, where we use
a special LM encoder for enhancing the representation such
as Roberta-Large [24] for CommonsenseQA, AristoRoBERTa
[25] for the OpenbookQA and so on. The node connects the
QA context node to each question entity and answers entity
nodes.

B. Language Pre-Representation

For the sequence of QA context embeddings
{wint, w1, ..., wT }, after fed through a special LM encoding
layer, we use an N-layer LM encoder to encode it into
a language representation {hn

int, h
n
1 , ..., h

n
T }, incorporating

location information, etc. We opt to use the BERT [26]
layer as the N-layer LM encoder due to its relatively smaller
parameter size compared to other LM encoders.{

hi
int, h

i
1, ..., h

i
T

}
= LM(

{
hi−1
int , h

i−1
1 , ..., hi−1

T

}
) (1)

for i = 1, ..., N

where LM(·) is a single-layer pre-trained language model
with parameter initialization loaded in advance, hi

int represents
the encoded knowledge representation of the token node at
layer i, which interacts with the GNN node representation to
exchange information. More technical implementation details
need to refer to [11].

C. Graph Inference Representation
We take the embedding

{
e01, ..., e

0
T−1, e

0
T

}
of the con-

structed subgraph node as input which is initialized from the
LM and construct the subgraph by referring to the construction
method of the Graph Attention Framework (GAT) [27]. The
node representation after l layer is calculated by the following
formula.{

el1, ..., e
l
T−1, e

l
T

}
= GNN(

{
el−1
1 , ..., el−1

T−1, e
l−1
T

}
) (2)

for l = 1, ...,M

where GNN(·) represents GAT, and its technical design
scheme follows from [11], [14]. GNN calculates and updates
the knowledge representation of each node ej ∈ {e1, ..., eJ}
through its neighbor nodes knowledge representation, node’s
type, and edge information.

elj = fn(

∞∑
i∈Nj∪{ej}

αijmij) + el−1
j (3)

where Nj represents the set of ej neighbor nodes, αij denotes
the attention weight of message passing, mij represents the
message from neighbor node i to node j, and fn represents
the multi-layer MLP. Information about the neighbor node
of node j such as the relation type and node representation
are aggregated to mij , and it is calculated by the following
formula.

rij = fr(r̃ij , ui, uj) mij = fm(ei, ui, rij) (4)



where rij is relation embedding from node i to node j, ui

and uj are the node type embedding of nodes i and j, r̃ij is
a relation embedding for the relation connecting ei and ej , fr
is a multi-layer MLP, and fm is a linear transformation. αij

reflects the importance of the neighbor node i to the message
of node j, and its calculation formula is as follows.

qi = fq(ei, ui) kj = fk(ej , uj , rsj) (5)

γij =
qTi kj√

D
αij =

exp(γij)∑
es∈Nj∪ej

exp(γij)
(6)

where ui, uj , rsj are defined the same as above, D is graph
nodes encode dimensions, and fq , fk are linear transformation.
More technical implementation details need to refer to the
GAT [27].

D. Modal Knowledge Interaction

After two independent knowledge representation layers of
LM and GNN, we use an EXGLInt for modal interaction,
which combines the token representation of LM with the
representation of each GNN node.

[h̃l
int; ẽ

l
i] = EXGLInt([hl

int; e
l
i]) (7)

for i = 1, ..., T

where T represents the number of subgraph nodes and hl
int, e

l
i

are defined the same as above. In EXGLInt, we use multiple
layers of MLP as information exchange units and use a two-
layer pooling layer to degrade an excessive number of param-
eters in combination with factorization ideas [28]. LM knowl-
edge representation does not participate in the interaction of
GNN representation except with the token node directly, and
the token node conducts knowledge interaction with each node
representation of GNN. Through modal interaction, each node
of GNN can learn LM modal knowledge, and LM can also
learn GNN modal knowledge from multi-layer interaction (see
Figure.2, the color fusion of node).

E. Reasoning and Prediction

After modal fusion of LM and GNN, the obtained hM
int

knowledge representation and graph node knowledge repre-
sentation

{
eM1 , ..., eMT−1, e

M
T

}
are concatenated through the

pooling layer. Then the representation is fed into MLP and
softmax to score a given (question, answer choice) pair based.

p = (a|q) = MLP (hM
int; e

M
1 , ..., eMT−1, e

M
T ) (8)

We use the cross-entropy loss and RAdam optimizer to opti-
mize the whole model end-to-end.

IV. EXPERIMENTS SETTINGS

Following previous work [11], [14], we set the batch size to
128 and use mini-batch training. We set separate learning rates
for GNN and LM, where the learning rate for GNN is chosen
from

{
1× 10−3, 2× 10−3

}
and the learning rate for LM

is chosen from
{
1× 10−5, 3× 10−5

}
[12]. The pre-trained

language model uses parameters provided by the Pytorch
interface in advance for parameter initialization. Given each

query, we set the number of subgraph retrieval hops to 2
according to [13] and the number of nodes reserved for each
subgraph to 200 following previous work [11], where we set
the node dimension of the graph to 200 and number of layers
(N = 5) of our GNN module [14]. We use one GPU (GeForce
RTX 3090 Ti-24g) for our experiments, and each task takes
about 10 hours.

A. DataSets

We evaluate our model LMGFuse on three standard QA
benchmarks: CommonsenseQA [15], OpenBookQA [16], and
MedQA-USMLE [17], which come from different domains
(commonsense and medical).

CommonsenseQA is a 5-option commonsense question
answering dataset of 12,102 questions that requires common
sense knowledge for reasoning. We conduct experiments on
the in-house data split of [10] to compare to baseline methods
since the CommonsenseQA test set is not publicly available.

OpenbookQA is a 4-option question commonsense an-
swering dataset of 5957 questions that require scientific facts
knowledge for reasoning. We use the official data-splitting
method [16].

MedQA-USMLE is a 4-option medical question answering
dataset of 12723 questions that require biomedical and clinical
knowledge for reasoning. The data segmentation method refers
to the official paper [17].

B. Knowledge Graph

We use ConceptNet [2] as the knowledge source for Com-
monsenseQA and OpenBookQA which is a general-domain
knowledge graph and better suited to commonsense reasoning
tasks. It has 799,273 nodes and 2,487,810 edges in total. For
MedQA-USMLE, We use the knowledge graph constructed by
[11], [14]. It contains 9,958 nodes and 44,561 edges.

C. Language Models

We set up different language models for different domain
tasks to better reason the implicit knowledge of each domain
task. We use the Roberta-Large [24] in CommonsenseQA,
and AristoRoBERTa [25] in OpenbookQA, which are com-
monsense pre-trained language models. We use the SapBERT
[29] on MedQA-USMLE, which is a biomedical pre-trained
language model. These language models selected demonstrate
LMGFuses generality concerning for to language model ini-
tializations.

V. RESULTS AND ANALYSIS

A. Main Results

Our experimental results on CommonsenseQA and Open-
BookQA datasets are presented in Table 1, respectively. From
the table comparison results of the previous two datasets,
our model has improved performance compared to the fine-
tuned LM and the existing LM+KG model, on Common-
senseQA, compared to Roberta +5.7% and the previous best
LM+KG model GREASELM compared to +0.2%, and on
OpenBookQA, obvious with 7.6% higher than fine-tuned LMs



and 1.2% higher than LM+KG models. Improvements over
QA-GNN and GREASELM show that our model LMGFuse
outperforms the LM+KG approach in transferring information
between text and KG representations. QA-GNN does not
integrate continuous interactions between two modalities, and
GREASELM uses more expressive labeled interactions to
fuse interactions that limit the ability of GNNs to propagate
information. The results on the OpenbookQA leaderboard are
shown in Table 2. UnifiedQA (11B params) and T5 (3B) are
about 30x and 8x larger than our model.

TABLE I: Evaluation of our models on CommonsenseQA
and OpenBookQA datasets under the same random seed. For
CommonsenseQA, as the official test is hidden, so here we
report the in-house Test (IHtest) accuracy and use the same
data set as [11], [14].

Methods CommonsenseQA
Acc.(%)

OpenBookQA
Acc.(%)

RoBERTa-Large (w/o KG) 68.7 -
AristoRoBERTa (no KG) - 78.4

RGCN [30] 68.4 74.6
GconAttn [20] 68.6 71.8
MHGRN [13] 71.1 80.6
QA-GNN [11] 73.4 82.8

GREASELM [14] 74.2 84.8

LMGFuse (Ours) 74.4 86.0

In addition, results on public datasets show that our model
exhibits superior performance in modal fusion, for which we
study performance on MedQA-USMLE datasets from other
domains. Table 3 shows that our model also has a better per-
formance compared to classical LM methods (e.g. SapBERT
[29]) in the biomedical domain compared with QA-GNN and
GREASELM, with a 4.3% improvement over fine-tuned LMs
and a 2.5% improvement over the LM+KG model.

Stacked of Modal Fusion Layer We test the effect of the
number of modal interaction layers on model performance. As
shown in Figure 3, increasing the number of modal interaction
layers continues to bring benefits until the number of layers
N = 3, when N > 3, the performance begins to degrade.
As the number of layers increases, the model changes from
underfitting to overfitting.
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TABLE II: Test accuracy on OpenBookQA leaderboard

Methods Acc.(%)

AristoRoBERTaV7 77.8
QAGNN-DeBERTa 79.0

QA-GNN [11] 82.8
GREASELM [14] 84.8

T5 11B + KB 85.4
JointLK [12] 85.6

UnifiedQA (11B) [4] 87.2

LMGFuse (Ours) 86.0

TABLE III: Performance on MedQA-USMLE.

Methods Acc.(%)

BIOROBERTA-BASE 36.1
BIOBERT-LARGE 36.7

SapBERT-Base (w/o KG) 37.2
QA-GNN 38.0

GREASELM 38.5

LMGFuse (Ours) 41.0

unfreeze epoch We researched the unfreeze epoch, a hy-
perparameter that affects the parameter updates of the LM
model during backpropagation. We found that freezing the
LM parameters for a certain number of epochs can improve
the performance of the model. As shown in Figure 4, on
OpenBookQA, the performance of the model increases by
about 2% when the unfreeze epoch is set from 0 to 4, and
when it is set from 4 to 6, it decreases by about 1.6%.

Furthermore, we do not compare with models on higher
leaderboards on OpenBookQA, such as unified QA [4], and
Albert+DESC-KCR [31], because they either use stronger text
encoders or use additional data resources, while our model
focuses on improving joint reasoning between KG and LM.

B. Ablation studies

Through ablation experiments, we analyze the effective-
ness of different model components on the MedQA-USMLE
dataset, which includes rich background information. We
evaluate the effect of fusing retrieval subgraphs with QA
contextual information on model performance.

TABLE IV: The performance of LMGFuse with and
without modal fusion on MedQA-USMLE.

Methods Acc.(%)

GREASELM (No QA context) 38.5
GREASELM (Join QA context) 38.8

LMGFuse (No QA context) 39.3
LMGFuse (Join QA context) 41.0

Graph Construction with QA context We perform exper-
iments to test whether adding QA context nodes to the model
can improve the performance of the model under the condition
that other environments such as random seeds are consistent.
We do not consider splicing the QA context node with all



nodes at the beginning, because the subsequent modal fusion
process is similar to this operation. The results in Table 4 show
that graph reasoning with QA context nodes can bring certain
improvements.

VI. CONCLUSION

In this paper, we propose the LMGFuse model, a new model
that realizes the multi-level deep interaction and fusion of
LM knowledge representations and GNN knowledge repre-
sentations in a novel way. In this model, we design a deep
interaction and fusion module, so that information can be
transferred and updated between the two knowledge models.
In addition, we also added the context node of the implicit
knowledge generated from LM encoding in the construction
of the reasoning subgraph in advance, so that the GNN
can learn the implicit knowledge during the first message-
passing process and enhance the reasoning ability of the GNN.
We conduct experiments on multiple domains (commonsense
and medical) datasets, and the results show that our model
outperforms the previous KG+LM and LM-only baselines,
demonstrating the models’ generality with respect to language
model initializations.
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