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Abstract—In recent years, deep learning has made breakthroughs 

in medical image segmentation, especially the U-Net architecture, 

which is becoming a benchmark for various medical image 

segmentation tasks due to the accuracy of its segmentation results. 

Although U-Net has achieved great success in many medical image 

segmentation tasks, it is still unsatisfactory in segmenting object 

boundaries and small objects. This is due to the fact that 

segmentation networks gradually lose information, especially edge 

information and small object information, during the process of 

convolution and downsampling of features. In order to solve the 

above problems, we design a novel method that uses a multi-scale 

module as a feature extractor in the contraction path of the U-

shaped structure, which better captures the scale changes of the 

target object by acquiring image features at different scales; in the 

prediction stage, a contour prediction branch is constructed to 

constrain the loss of the target's contour, so that the segmentation 

network pays more attention to the boundaries of the target. We 

have validated the performance of our method on the Automated 

Cardiac Diagnosis Challenge (ACDC) and the spleen segmentation 

tasks of the Medical Segmentation Decathlon (MSD). The results 

show that our method obtained the best 95% Hausdorff Distance 

(HD) metrics on both the ACDC dataset and the Spleen dataset, as 

well as being quite competitive with other state-of-the-art methods 

in terms of Dice scores. 
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I. INTRODUCTION 

Medical image segmentation is an important topic in the field 
of medical imaging analysis, which aims to outline anatomical 
structures and other regions of interest (ROIs) from medical 
images. Accurate segmentation is crucial for modern computer-
aided diagnosis (CAD) applications such as disease diagnosis, 
treatment planning, and disease progression monitoring. 
Recently, the emergence of Convolutional Neural Networks 
(CNNs) has greatly facilitated the development of medical 
image segmentation, and many high-performance models have 
appeared, among which the most widely used one has to be U-
Net [1]. It mainly relies on a U-shaped encoder-decoder 
architecture and skip connections connecting the encoder and 
decoder, where the encoder learns global contextual 
representations by progressively downsampling the extracted 
features, while the decoder up-samples the extracted 
representations to the input resolution for pixel/voxel semantic 
prediction, and the skip connections connect the encoder's output 
with the decoder at different resolutions so that spatial 
information lost during downsampling can be recovered. 

Although U-Net has achieved great success in many medical 
image segmentation tasks, it is still not able to segment the edges 
of target objects satisfactorily. In addition, due to the complexity 
of medical image imaging modalities, unwanted blurred images 
may appear during the imaging process. To address these issues, 
numerous studies have focused on developing contour-aware 
networks that consider object boundaries[2-4]. However, most 
of the above solutions use additional up-sampling branches to 
predict the contour of the segmented target which greatly 
increases the number of parameters of the network, or use only 
shallow features for contour prediction and do not incorporate 
deeper semantic features, resulting in poor contour prediction. 

In this work, we propose a medical image segmentation 
method that combines multi-scale features and contour loss 
constraints. In order to avoid smaller target objects being ignored 
or larger target objects being inaccurately segmented, we use the 
MultiBlock module as a feature extractor in the contraction path 
of the U-shape structure, which better captures the scale changes 
of the target objects by acquiring image features of different 
scales. And in the prediction stage, we construct a contour 
prediction branch to constrain the loss of the target's contour so 
that the segmentation network pays more attention to the target's 
boundaries. We validate the effectiveness of our method on the 
ACDC [5] dataset and the Spleen dataset in MSD [6]. The results 
show that our method obtains the optimal 95% Hausdorff 
Distance (HD) on the ACDC dataset and Spleen dataset, and also 
outperforms other state-of-the-art methods on the Dice metric. 

II. RELATED WORK 

A. Multi-scale Segmentation 

 Multi-scale medical image segmentation is an effective 
method designed to overcome the problem of insufficient local 
information and inconsistent global information at a single scale. 
In past studies, many scholars have proposed various multi-scale 
medical image segmentation methods to improve the quality and 
stability of segmentation results. For example, Tian et al. 
proposed a multi-scale liver tumor segmentation method based 
on pyramidal convolutional neural networks, which obtained 
more accurate liver tumor segmentation results by integrating 
feature information at different scales [7]. Dou et al. proposed a 
lung nodule detection method based on multi-scale segmentation 
fusion, which improves the accuracy and robustness of nodule 
detection by integrating segmentation results at different scales 
[8].  
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Figure 1.  Structure diagram of the whole network, where ℒ𝑐𝑜𝑛𝑡𝑜𝑢𝑟 is the loss of contour,  ℒ𝑠𝑒𝑔 is the loss of segmentation and GT is the GroundTruth.

B. Segmentation with Contour Constraints 

To enhance medical image segmentation, researchers have 
focused on the relationship between target contours and 
segmentation outcomes, achieving satisfactory results. For 
example, Mirikharaji et al. proposed a star-shaped loss which 
preserves the segmented region with a star shape for 
dermoscopic skin lesion segmentation tasks and significantly 
improved the segmentation performance [9]. Chen et al. used a 
dual decoder structure to predict the segmentation result and the 
target's boundaries separately, which significantly enhances the 
boundary-awareness of the segmentation network [2]. However, 
in the above solutions, the loss function is difficult to design and 
cannot be reused, and the additional branches may significantly 
increase the number of parameters in the model. 

III. METHOD 

We outline the proposed model in Fig 1.  The model has two 
improvements over U-Net: (1) using the MultiBlock module as 
a feature extractor in the downsampling stage of the U-structure 
to better capture the scale variation of the target object; (2) 
constructing a contour prediction branch in the prediction stage 
to better constrain the loss of the contours of the target object. 

A. MultiBlock Module 

The details of the MultiBlock module are shown in Fig 2. [10] 
proposed a novel network architecture called DenseUNet, which 
uses dense convolution instead of the normal CNN convolution 
in the traditional U-Net architecture, thus improving the 
segmentation accuracy of the model. However, since DenseNet 
mixes the features of all previous layers at each layer, this results 
in a slower model with higher memory consumption. In order to 
solve the above problems, a new One-Shot Aggregation (OSA) 
module is proposed in [11] instead of Dense Block. The OSA 
module avoids the problems of computational inefficiency and 
high energy consumption in DenseNet due to the dense 
connections by aggregating all the features at once.  

Figure 2.  Structure diagram of the MultiBlock modules. 𝐹1×1, 𝐹3×3 denote 1 

× 1, 3 × 3 conv layer, respectively, 𝐹𝑎𝑣𝑔 is global average pooling, 𝑊𝐶is a 

fully-connected layer, 𝐴𝑒𝑆𝐸 is channel attention map. 

The MultiBlock module we use in this article is a variant of 
the OSA module [12]. Assuming that the number of channels of 
the input data is k, we first use the ordinary convolutional layer 
to double the channels to get more features, and the number of 
channels of the doubled feature 𝑋2 is 2 * k. Then, successive 
convolution of 𝑋2  is performed to obtain features at different 



scales and these features are spliced together with 𝑋2 to form the 
multi-scale feature 𝑋𝑚𝑢𝑙𝑡𝑖 , and the number of 𝑋𝑚𝑢𝑙𝑡𝑖  channels is 
8 * k. 𝑋𝑚𝑢𝑙𝑡𝑖  is then downscaled using a 1×1 convolutional layer 
to obtain 𝑋𝑑𝑖𝑣, which has 2 * k channels. Then 𝑋𝑑𝑖𝑣 is enhanced 
by an eSE (Effective Squeeze-Excitation) channel attention 
module, and the enhanced feature is 𝑋𝑟𝑒𝑓𝑖𝑛𝑒 , and the residuals of 

𝑋𝑟𝑒𝑓𝑖𝑛𝑒  and 𝑋2 are processed to get the final output. Unlike the 

normal SE (Squeeze-Excitation) channel attention module 
which uses two fully connected layers for dimensionality 
reduction and then dimensionality enhancement, the eSE 
module uses only one fully connected layer, which reduces the 
possibility of information loss due to dimensionality reduction. 
The eSE process is defined as: 

where 𝐹𝑔𝑎𝑝  is channel-wise global average pooling, 𝑊𝐶 is 

weight of a fully-connected layers, 𝜎 denotes the sigmoid 
function, 𝐴𝑒𝑆𝐸 is a channel attentive feature descriptor and ⊗
 denotes element-wise multiplication.  

B. Contour Prediction Branch 

One of the reasons limiting the performance of medical 
image segmentation is the inaccurate segmentation of the target's 
contour. There are two main methods to solve the above problem, 
one is to modify the loss function to make the network more 
concerned about the contour loss, but the design of the loss 
function is more difficult; the other method is to use the dual-
stream decoder structure to build a separate branch of the 
decoder to predict the target's contour, but this greatly increases 
the number of parameters of the model. It is well known that the 
shallow features of neural networks contain rich boundary 
information, but also contain a lot of interference information 
that is not related to the contour, so it is difficult to predict the 
contour using only the shallow features. In order to significantly 
enhance the hidden details in the shallow feature maps and avoid 
the interference of irrelevant information, we use the shallow 
features before the first skip connection and the deep features 
after the expansion operation as the inputs to the contour 
prediction branch. The shallow features before the first skip 
connection contain a lot of boundary information and can 
provide a clear boundary, while the deep features after the 
expansion operation remove a lot of irrelevant information, 
which can avoid the interference of irrelevant information and 
let the model focus more on the contour information. To increase 
the number of parameters as little as possible, we use only one 
layer of normal CNN convolution as the contour prediction 
branch. 

C. Loss Function 

For the overall loss, we define it using the following equation: 

 ℒ𝑡𝑜𝑡𝑎𝑙  =  ℒ𝑠𝑒𝑔 × 0.9 +  ℒ𝑐𝑜𝑛𝑡𝑜𝑢𝑟 × 0.1 (3) 

Where ℒ𝑡𝑜𝑡𝑎𝑙  is the loss of the whole network, ℒ𝑠𝑒𝑔  is the 

loss of the segmentation branch, and ℒ𝑐𝑜𝑛𝑡𝑜𝑢𝑟  is the loss of the 
contour prediction branch. The loss functions for all the above 

branches are a combination of soft dice loss and cross-entropy 
loss, and in practice we use DiceCELoss in the monai framework 
as the loss function of each branch. 

IV. EXPERIMENTS 

A. Dataset 

ACDC (MRI): the ACDC dataset [5] is a MICCAI 2017 
challenge to perform left ventricular (LV), right ventricular (RV), 
and myocardial (Myo) segmentation of end-diastolic (ED) and 
end-systolic (ES) frames from cardiac dynamic magnetic 
resonance imaging (cine-MRI). There are 150 cases in this 
dataset, 100 cases in the training set and 50 cases in the test set. 
Since the images in this dataset are not uniform in size, we 
cropped the data uniformly to (128, 128). Then 70 cases were 
randomly selected from the training set data for training, the 
remaining 30 cases were used for validation, and finally 
evaluated on 50 cases in the test set. For specific tests, we used 
only end-diastole for training and testing. 

Spleen (CT): The Spleen dataset [6] is the 9th subtask of the 
MSD (Medical Segmentation Decathlon) and the goal is to 
segment the spleen from CT images. The dataset consists of 41 
CT data with annotated spleen bodies. The original size of the 
image slices is (512, 512), and we cropped the slices to (256, 256) 
to minimize the background interference while preserving the 
target region intact. We randomly selected 30 out of 41 cases for 
training the model, 5 cases for validation, and 6 cases for testing. 

Since the above datasets do not have the ground truth of the 
contours, we use Canny Edge Detection Algorithm [13] to 
perform edge detection on the ground truth of the segmentation 
results to obtain the ground truth of all the contours. 

B. Implementation Details 

We implemented our method in Python using Pytorch and 
trained and evaluated our method on a computer equipped with 
an NVIDIA RTX-2050. In the experiments, the batch size of the 
ACDC dataset was 4 and the batch size of the Spleen dataset was 
2. The initial learning rate was 0.001 and 20 iterations were 
performed using the AdamW optimizer. We used Dice score and 
95% Hausdorff Distance (HD) to evaluate the accuracy of the 
segmentation results, where Dice score describes the overall 
accuracy of the segmentation results and 95% HD describes the 
accuracy of the target's contour. 

C. Experimental Result 

We conducted experiments on the ACDC dataset and the 
Spleen dataset and compared the proposed model with five 
previous state-of-the-art techniques:1)U-Net[1]; 2) UNet++[14]; 
3) AttnUnet[15]; 4) MultiResUNet[16] and 5) CUnet[3]. 

 The specific results of the comparison experiments are 
shown in Table I. From Table I, we can see that our method 
achieves the optimal results in 95% HD metrics, which means 
that our method obtains the optimal segmentation boundaries, 
and at the same time, in Dice scores, our method is better than 
other advanced methods. The experimental results demonstrate 
that the model can obtain better boundary segmentation results 
after combining multi-scale features and contour loss constraints.  

 𝐴𝑒𝑆𝐸(𝑋𝑑𝑖𝑣) = 𝜎(𝑊𝐶(𝐹𝑔𝑎𝑝(𝑋𝑑𝑖𝑣))), (1) 

 𝑋𝑟𝑒𝑓𝑖𝑛𝑒 = 𝐴𝑒𝑆𝐸(𝑋𝑑𝑖𝑣) ⊗ 𝑋𝑑𝑖𝑣 (2) 



TABLE I.  Experimental Performance Of Different Methods 

TABLE II.  Results Of Ablation Experiments 

Models 
ACDC Spleen 

Dice 95%HD Dice 95%HD 

U 0.8805 3.2462 0.9286 7.5744 

U + M 0.8914 2.9132 0.9310 6.6722 

U + C 0.8856 2.9965 0.9333 7.0622 

U + M + C 0.8952 2.8214 0.9384 5.8814 

D. Ablation 

We conducted ablation studies on our proposed method on 

different datasets. Table II shows the results of the ablation study，
where U denotes the baseline model U-Net, M denotes the 
MultiBlock module, and C denotes the contour prediction 
branch. From the results of the ablation experiments, it can be 
seen that our proposed model shows a considerable 
improvement on different datasets, with the highest 
improvement in Dice scores on the ACDC dataset by 1.47% 
(from 88.05% to 89.52%), and the highest decrease in 95HD on 
the Spleen dataset by 1.693 (from 7.5744 to 5.8814). 

V. CONCLUSION 

In this paper, we propose a new medical image segmentation 
method, which uses multi-block modules to acquire features at 
different scales to better capture the scale variation of the target 
object, and adds a contour prediction branch in the prediction 
stage to make the network focus more on the contour 
information of the target. We validated the effectiveness of the 
method in different segmentation tasks in MRI and CT 
modalities. The results show that the method performs 
significantly better than other mainstream segmentation 
methods on the ACDC dataset and achieves excellent results in 
the spleen segmentation task. 
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Methods 

ACDC Spleen 

RV Myo LV Avg Avg 

Dice 95%HD Dice 95%HD Dice 95%HD Dice 95%HD Dice 95%HD 

U-Net[1] 0.8558 4.4777 0.8535 2.9563 0.9322 2.3046 0.8805 3.2462 0.9286 7.5744 

UNet++[14] 0.8607 4.3240 0.8581 2.9627 0.9302 2.1707 0.8830 3.1524 0.9342 9.5044 

AttnUnet[15] 0.8626 4.0574 0.8598 2.8303 0.9342 2.3713 0.8855 3.0863 0.9326 6.8223 

MultiResUNet[16] 0.8647 4.3447 0.8589 3.0264 0.9321 2.5795 0.8852 3.3169 0.9306 6.7520 

CUnet[3]  0.8594 4.5413 0.8713 2.7021 0.9413 1.9828 0.8907 3.0754 0.9338 7.1515 

Ours 0.8689 4.1603 0.8706 2.5038 0.9459 1.8000 0.8952 2.8214 0.9384 5.8814 


