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Abstract—Advancements in satellite remote sensing have en-
hanced Earth observation, enabling the acquisition of images
crucial for various remote sensing applications. However, cloud
cover degrades image quality and obstructs surface information.
Traditional cloud removal techniques struggle to restore both
low-level and high-level features, especially under complex con-
ditions. To address these challenges, we propose STGAN-CR, a
novel framework integrating Swin Transformer with Generative
Adversarial Networks (GANs) to optimize image detail recovery.
Leveraging the Swin Transformer’s global modeling capabilities,
our method enhances feature extraction and restoration, over-
coming limitations of conventional models. We introduce a new
evaluation metric focused on scene classification accuracy post-
de-clouding to better assess practical utility. Extensive experi-
ments and ablation studies show that STGAN-CR outperforms
existing models in visual quality and classification performance.
These advancements offer an effective solution for enhancing
the quality and utility of remote sensing images, balancing
the restoration of both low-level and high-level features, and
providing more meaningful de-clouded images for downstream
applications.

Index Terms—Cloud removal; Transformer; Generative Ad-
versarial Network; Deep learning; Remote sensing

I. INTRODUCTION

Advancements in satellite remote sensing technology have
significantly expanded the potential for Earth observation,
enabling the acquisition of large-scale remote sensing images.
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These images play a crucial role in various applications such
as environmental monitoring, urban planning, and disaster
assessment. However, the presence of cloud cover severely
degrades the visual quality of these images and obstructs
crucial surface information, thereby impeding their practical
utility [1]. Effective cloud removal techniques are therefore
essential to restore lost data and enhance the reliability and
accuracy of remote sensing applications [2].

Despite significant advancements in cloud removal meth-
ods, the task remains formidable due to the complex and
variable nature of cloud cover [2]. Deep learning methods,
particularly those utilizing Synthetic Aperture Radar (SAR),
have shown remarkable abilities to handle these complexities
[3] [4]. Models such as DSen2-CR [5] and GLF-CR [6]
leverage multimodal data to restore low-level features like
pixel values and brightness, as well as high-level features such
as geographic contours and semantic details. However, these
models often fail to balance the restoration of these two feature
levels, focusing more on pixel accuracy while neglecting the
integration of semantic and geographic integrity essential for
practical applications of remote sensing data.

Furthermore, integrating SAR and multispectral data using
Generative Adversarial Networks (GANs) has improved de-
clouding results. Models like McGANs [7], CycleGAN [8],
SAR-Opt-cGAN [9], and SpA-GAN [10] maintain high-level
image features but are limited by the use of traditional Con-
volutional Neural Networks (CNNs), which are less efficient



Fig. 1. Overview of the proposed STGAN-CR algorithm.

in capturing long-range pixel associations and global features.
There remains a gap in research exploring the combination of
GANs and Transformer models, which could synergize GANs’
high-level feature reconstruction with Transformers’ low-level
feature processing to overcome the limitations of CNN-based
frameworks and enhance detailed and contextually accurate
image restoration.

Current evaluation practices for remote sensing image de-
clouding primarily focus on low-level feature recovery using
metrics such as Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index Measure (SSIM), which assess pixel-
level accuracy but often overlook the restoration of higher-
level features. The analysis of the SEN12MS-CR dataset by
Gawlikowski et al. [11] highlights the significant impact of
cloud cover on downstream tasks like scene classification. This
underscores the need for robust evaluation metrics that assess
both low-level and high-level feature restoration, aligning more
closely with the operational utility of de-clouded images.

To address these challenges, we propose a novel cloud
removal approach named STGAN-CR (Swin Transformer-
enhanced GAN-based Cloud Removal). This framework lever-
ages the Swin Transformer to enhance feature extraction and
restoration, optimizing the recovery of both low-level and
high-level features. By incorporating conditional adversarial
training, STGAN-CR ensures comprehensive feature restora-
tion in remote sensing images. The Swin Transformer-based
architecture for both the generator and discriminator signifi-
cantly improves the extraction of global high-level features,
overcoming the limitations of traditional convolution-based
models.

Furthermore, we introduce a new evaluation metric focused
on the scene classification accuracy of de-clouded images.
This metric aims to more accurately assess the practical
utility of de-clouded images by evaluating the restoration
success of high-level features essential for downstream remote
sensing tasks [12]. Extensive experiments and ablation studies
demonstrate that STGAN-CR significantly outperforms exist-
ing methods in terms of both visual quality and classification
performance.

In summary, our key contributions are as follows:

• Advanced De-clouding Framework: A novel cloud
removal framework that integrates generative models
and considers both low-level and high-level features
within the optimization objectives, ensuring comprehen-
sive restoration across varying levels of detail.

• Swin Transformer-Based Architecture: Utilizing Swin
Transformer for both the generator and discriminator
to enhance the extraction of global high-level features,
providing superior performance in capturing complex
spatial dependencies.

• New Metric for Scene Classification: Development of
an innovative evaluation metric focused on scene classifi-
cation accuracy post-de-clouding, measuring the restora-
tion success of high-level features and offering a relevant
assessment of image quality for practical applications.

II. METHODOLOGY

A. STGAN-CR Framework Overview

In this study, we propose the STGAN-CR framework, which
leverages the Swin Transformer to enhance cloud removal
from remote sensing images. The framework employs a con-
ditional adversarial training strategy involving two primary
components: the generator G and the discriminator D. The
generator G takes as input a cloud-covered multispectral image
O and a corresponding Synthetic Aperture Radar (SAR) image
S, generating a de-clouded pseudo multispectral image F :

F = G(O,S)

The discriminator D evaluates the authenticity and quality
of the generated images. It processes both real cloud-free
multispectral images R with their corresponding SAR images
S and the pseudo cloud-free multispectral images F with the
same SAR images. The discriminator outputs a classification
matrix M , which assesses the authenticity of the images in
local regions:

Mr = D(R,S) and Mf = D(F, S)

By including SAR images, which provide crucial spatial
structural information about the terrain beneath the clouds, the



discriminator can more accurately determine the authenticity
of the multispectral images, especially in densely or exten-
sively cloud-covered areas. This adversarial training strategy
effectively restores terrain structures and semantic information,
enhancing the overall quality and utility of the generated
cloud-free images.

B. Optimization Strategy and Loss Functions
To guide the adversarial learning process, we design spe-

cific optimization objectives and loss functions for both the
generator and the discriminator.

1) Adversarial Loss Function for the Generator: The pri-
mary goal of the generator G is to produce images that closely
resemble real cloud-free images. This is achieved through an
adversarial loss function:

LGAN =
1

HMWM

∑
i,j

(
(Mfi,j − 1)2

)
where HM and WM are the height and width of the

classification matrix, respectively, and Mfi,j is the value at
position (i, j) in the pseudo classification matrix.

2) Discriminator’s Loss Function: The discriminator D
aims to differentiate between real and generated pseudo im-
ages. Its loss function LD is designed to improve discrimina-
tion accuracy:

LD =
1

HMWM

∑
i,j

(
(Mri,j − 1)2 + (Mfi,j − 0)2

)
This formulation allows the discriminator to independently

judge the authenticity of images in each local region, enhanc-
ing its overall discrimination capability.

3) Charbonnier Loss: To further refine the generator’s
performance, we incorporate the Charbonnier loss, a modified
version of the L1 loss that is particularly effective in smoothing
the gradient of the loss function:

LCharbonnier =
1

HIWICI

∑
i,j,k

√
(Ri,j,k − Fi,j,k)2 + ϵ2

where ϵ is a small constant ensuring numerical stability, and
Ri,j,k and Fi,j,k are the pixel values of the real and generated
images, respectively.

4) Final Loss Function for the Generator: The final loss
function for the generator combines the adversarial loss and
the Charbonnier loss to guide the comprehensive restoration
of both high-level and low-level features:

LG = LGAN + λ1LCharbonnier

where λ1 is a weight coefficient that tunes the influence of
the Charbonnier loss based on specific application needs.

C. Generator and Discriminator Design
1) Generator Design: The generator in the STGAN-CR

framework leverages the Swin Transformer to enhance global
high-level feature extraction. The architecture involves several
key components:

Fig. 2. Architecture of Generator

Fig. 3. Architecture of Discriminator

a) Initial Convolution Operation: Before extracting fea-
tures with the Transformer, an initial 3 × 3 convolutional kernel
is applied for preliminary feature extraction, resulting in Finit.
This operation maps the image to a higher-dimensional feature
space, preparing it for subsequent Transformer-based feature
extraction.

b) Absolute Position Encoding Block (APEB): To intro-
duce positional information, an Absolute Position Encoding
Block (APEB) is applied, yielding Fpos. This block com-
pensates for the Transformer’s lack of inherent positional
encoding.

c) Residual Connection Encoder Blocks (RCEB): The
features Fpos undergo deep feature extraction through multiple
layers of Residual Connection Encoder Blocks (RCEB), pro-
ducing Fdeep. The initial and deep features are then combined
using residual connections to form the final features Ffinal.

d) Final Convolution and Output: The features are
downscaled back to the dimensions of the multispectral images
through another 3 × 3 convolutional operation, resulting in
Ires. This result is added to the cloud-covered multispectral
image O to form the final output:

Ifinal = Ires +O

2) Discriminator Design: The discriminator uses a Patch-
GAN architecture, which outputs a classification matrix rather
than a single scalar. This matrix assesses the authenticity of
the input image in corresponding subregions. Key components
include:



TABLE I
COMPARATIVE ANALYSIS OF CLOUD REMOVAL METHODS ON SEN12MS-CR DATASET

Method PSNR SSIM MAE SAM Scene Class. Acc.
SFGAN 27.22 0.8533 0.0358 10.445 42.66%
DSen2-CR 28.00 0.8718 0.0310 9.469 53.09%
GLF-CR 28.23 0.8632 0.0320 8.887 50.93%
STGAN-CR (Ours) 28.56 0.8859 0.0295 8.630 57.40%

a) Patch Merging Encoder Blocks (PMEB): The discrim-
inator employs Patch Merging Encoder Blocks (PMEB), which
progressively reduce the feature dimensions while increasing
vector dimensions. This compression enhances feature expres-
sion capabilities.

b) Final Convolution and Classification: After the
PMEB sequence, a final 3 × 3 convolution reduces the feature
dimensions to one, producing the final classification matrices
Mr or Mf . This design ensures effective evaluation of the
authenticity of local areas within the overall image.

D. Scene Classification Accuracy

Traditional metrics like Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM) primarily focus on
low-level feature recovery. However, they often overlook the
restoration of high-level features crucial for practical remote
sensing applications. To address this, we introduce scene
classification accuracy as a novel metric.

1) Calculation and Implementation: Scene classification
accuracy evaluates the effectiveness of cloud removal methods
in restoring high-level features essential for accurate scene
classification. It is calculated as follows:

Accuracy =
1

n

n∑
i=1

I(yi = ŷi)

where n is the number of samples, yi is the true scene
category of the ith sample, ŷi is the predicted category, and
I is an indicator function that equals 1 when yi = ŷi and 0
otherwise.

The scene classifier employed in this research is trained
on the SEN12MS dataset, which includes scene classification
labels. By evaluating the restored high-level features through
scene classification accuracy, we provide a more direct assess-
ment of the practical utility of de-clouded images in real-world
applications.

III. EXPERIMENT AND RESULTS

A. Dataset and Implementation Details

The experiments in this study use the SEN12MS-CR
dataset, built on the SEN12MS dataset, which includes ob-
servations for 175 non-overlapping Regions Of Interest (ROI)
across the globe during all four seasons. Each ROI contains
cloud-free multispectral images, cloud-covered multispectral
images, and SAR images, with an average cloud cover of about
48%, reflecting real-world scenarios [12]. Each ROI spans
approximately 52 × 40 km, subdivided into multiple image
segments of 256 × 256 pixels, with a 50% overlap, resulting

in about 700 segments per ROI. The dataset comprises 108,941
triplets for training, 6,535 for validation, and 6,742 for testing,
with multispectral images normalized to [0, 1].

The generator architecture features an initial feature vector
length of 60 and 4 Residual Connection Encoder Blocks
(RCEBs) with 4 Swin Transformer Blocks (STBs) each, while
the discriminator uses a PatchGAN architecture with 4 Patch
Merging Encoder Blocks (PMEBs). Both models are trained
using the Adam optimizer with a batch size of 18, employing
a cosine annealing schedule for learning rates, initially set at
3×10−4 for the generator and 3×10−6 for the discriminator,
over 50 epochs. Data augmentation techniques such as ran-
dom cropping, flipping, and rotation are applied to enhance
model robustness. The source code and pre-trained models
for STGAN-CR are available at https://github.com/Major-
333/cloud-removal, providing comprehensive instructions for
replicating our experiments.

B. Evaluation Metrics

Traditional metrics such as Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) have been
foundational in evaluating the fidelity of cloud-removed im-
ages, focusing primarily on low-level features like pixel values,
brightness, and contrast. However, these metrics often fail
to address higher-level features such as object contours and
semantic information, which are crucial for the practical utility
of remote sensing data in applications like environmental
monitoring and urban planning. To provide a more compre-
hensive evaluation, we introduce scene classification accuracy,
which assesses the effectiveness of cloud removal methods
in restoring high-level features essential for accurate scene
classification.

C. Quantitative Evaluation

We compare STGAN-CR with three leading de-clouding
methods: Simulation-Fusion GAN (SFGAN), DSen2-CR, and
GLF-CR. These benchmarks are chosen for their demonstrated
effectiveness in handling cloud-covered remote sensing im-
ages. SFGAN is renowned for its generative model-based
approach, serving as a standard reference in numerous studies
due to its innovative use of GANs. DSen2-CR leverages
SAR data with convolutional neural networks to enhance data
reliability and image clarity. GLF-CR, employing Transformer
technologies, achieves notable improvements in key image
quality metrics such as PSNR, showcasing the effectiveness
of Transformers in capturing complex spatial relationships in
remote sensing data.

https://github.com/Major-333/cloud-removal
https://github.com/Major-333/cloud-removal
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Fig. 4. Visual Comparison of Cloud Removal Methods Across Sparse Grasslands

(a) Cloudy MS (b) DSen2 CR (c) SFGAN (d) GLF-CR (e) Ours (f) Ground Truth

Fig. 5. Visual Comparison of Cloud Removal Methods Across Croplands

(a) Cloudy MS (b) DSen2 CR (c) SFGAN (d) GLF-CR (e) Ours (f) Ground Truth

Fig. 6. Visual Comparison of Cloud Removal Methods Across Forest

(a) Cloudy MS (b) DSen2 CR (c) SFGAN (d) GLF-CR (e) Ours (f) Ground Truth

Fig. 7. Visual Comparison of Cloud Removal Methods Across Urban

The models are evaluated using PSNR, SSIM, Mean Abso-
lute Error (MAE), Spectral Angle Mapper (SAM), and scene
classification accuracy. PSNR and SSIM measure the fidelity
and structural similarity to the original images, MAE evaluates
the average magnitude of errors between the predicted and true
values, SAM assesses spectral fidelity, and scene classification
accuracy evaluates the restoration of high-level features essen-
tial for accurate scene classification.

Table I shows the results. STGAN-CR outperforms other
methods across all metrics, demonstrating superior perfor-
mance in restoring both low-level and high-level features.

D. Subjective Visual Comparison

We selected four representative regions for visual com-
parison: sparse grasslands, farmland, forest, and urban areas.
These regions were chosen due to their diverse geographical
characteristics and the varying complexity they present for

cloud removal. Figures 4 to 7 illustrate the de-clouding effects
produced by STGAN-CR and three other methods (SFGAN,
DSen2-CR, and GLF-CR). In the sparse grasslands region,
STGAN-CR closely matches the true cloud-free image in
overall color and successfully identifies and restores parts of
trees obscured by clouds, presenting a realistic visual effect.
In farmland areas, STGAN-CR restores the farmland pat-
terns more neatly, with clearer demarcations between different
patches of farmland compared to other methods, demonstrating
distinctly superior visual effects.

In the dense forest region, where cloud cover obscures
several patches of forest, STGAN-CR not only delineates the
forest contours sharply but also recovers intricate tree patterns,
delivering the highest realism. Urban areas pose one of the
most significant challenges due to the detailed structures of
buildings and roads. STGAN-CR effectively restores detailed



architectural patterns and urban semantics, significantly out-
performing other methods, which often produce unclear and
vague outlines. These results demonstrate that STGAN-CR
achieves the best de-clouding visual effects across various
regions, maintaining clearer contours and more realistic visual
effects compared to other methods. This highlights STGAN-
CR’s superior capability in analyzing deep semantic informa-
tion and restoring corresponding terrain features.

E. Ablation Study

TABLE II
ABLATION ANALYSIS OF STGAN-CR METHODS ON SEN12MS-CR

DATASET

Method PSNR SSIM MAE SAM Scene Class. Acc.
w/o LGAN 28.82 0.8886 0.0288 8.436 51.65%
STGAN-CR 28.56 0.8859 0.0295 8.630 57.40%

To demonstrate the effectiveness of the conditional adver-
sarial training framework in STGAN-CR, we conducted an
ablation study focusing on the loss function, which includes
both the Charbonnier loss (LCharbonnier) and the GAN loss
(LGAN ). The study evaluated the model’s performance with
and without the LGAN component. The results, as shown in
Table II, indicate that excluding the LGAN component leads to
slight improvements in low-level feature metrics like PSNR,
SSIM, and MAE, as these metrics favor pixel-level accuracy
which deep regression models naturally optimize.

However, the inclusion of the LGAN component signif-
icantly enhances the model’s ability to recover high-level
features, as evidenced by a substantial increase in scene
classification accuracy. This suggests that while models with-
out LGAN excel in low-level feature restoration, they lag in
high-level feature recovery essential for practical applications.
The LGAN component sacrifices a small portion of low-level
accuracy to greatly improve high-level feature restoration,
demonstrating its critical role in balancing the overall perfor-
mance of the de-clouding model.

Our findings highlight that combining both LCharbonnier

and LGAN provides the most comprehensive restoration of
remote sensing images, balancing low-level and high-level
feature recovery. This dual-loss approach ensures that the gen-
erated cloud-free images are not only visually accurate but also
semantically meaningful, thus better supporting downstream
tasks such as environmental monitoring and urban planning.

IV. CONCLUSION

This study introduces STGAN-CR, a novel approach for
cloud removal in remote sensing images by integrating
Swin Transformer with Generative Adversarial Networks. Our
method effectively bridges the gap between restoring low-level
details and high-level semantic features, achieving superior
performance across various metrics on the SEN12MS-CR
dataset. The incorporation of a new performance metric, scene
classification accuracy, provides a nuanced evaluation that
aligns with practical demands in Earth observation. Future
research could extend the applicability of STGAN-CR to

multi-temporal datasets and other image enhancement tasks,
leveraging its robust capabilities. The integration of advanced
cloud detection technologies is anticipated to further refine the
precision of cloud removal processes, enhancing the usability
and functionality of remote sensing data for more accurate and
reliable analyses.
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