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Abstract—The plane is the fundamental characteristic for
describing the shape of polyhedral buildings. Roof plane
segmentation of airborne LiDAR point clouds is an important
step in 3D building model reconstruction. Existing methods are
either non-automatic and efficient traditional methods, or
hindered by the lack of datasets for roof plane segmentation and
therefore fail to achieve good training for deep learning methods.
To address the above issues, we proposes an end-to-end network
called PUTr for roof plane segmentation of sparse point clouds.
This network integrates a Point-cloud Upsampling module and
Transformer to ensure effective generalization even when trained
on low-density datasets, while also capturing dependency
relationships within point cloud neighborhoods. Our model
overcomes the low automation and manual intervention of
existing methods, and the limited generalization of deep learning
due to scarce high-quality datasets. Evaluations also demonstrate
its effectiveness in roof plane segmentation of laser point cloud
data.
Index Terms—roof plane segmentation, building plane

I. INTRODUCTION
Roof plane segmentation is inherently complex due to the

irregular and unordered nature of point clouds, which lack any
connectivity information and do not provide semantic features
at the lower level [1-3]. Existing roof plane segmentation
methods still primarily rely on traditional techniques such as
region growing [4-5]. Some researchers have improved seed
point selection or enhanced plane extraction efficiency.
However, while region growing algorithms are robust against
noise and irregular point cloud regions, they can lead to over-
segmentation or under-segmentation of roof plane boundaries.
Similarly, model fitting techniques [6-7] have been refined to
mitigate issues like excessive false planes and long processing
times, yet these methods still struggle with point clouds
characterized by high noise levels and irregular roof shapes.
Additionally, Li Li et al. [8] applied hierarchical clustering to
iteratively merge adjacent planes and then refine them to
extract high-quality roof planes. However, this clustering-based
approach is prone to erroneous clustering in uneven or noisy
point clouds and is not suitable for large datasets [9-10]. In
summary, the use of these traditional methods is increasingly
constrained, and they seem outdated in the current landscape
dominated by deep learning.

With the advancement of deep learning in point cloud
processing, deep learning models have gradually been applied
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to tasks such as point cloud classification, segmentation, and
3D reconstruction, yielding promising results in recent years
[11] . The deep learning-based plane segmentation network
RoofNet has been proposed [12]. However, it is worth noting
that compared to modern deep learning models like
Transformers, RoofNet has a relatively simple structure and
limited representation learning capabilities. In addition, the
scarcity of sufficient datasets for roof plane segmentation in
point clouds makes it challenging to find high-quality data,
significantly hindering progress [13]. Although RoofN3D [14]
provides segmentation of individual roofs, its average point
density is only around 5 points/square meter, which is much
lower than the standard point density captured by mainstream
LiDAR scanning devices (10-12 points/square meter). This
limitation leads researchers to rely on non-standard public
datasets or self-generated datasets for training, which
undermines the persuasiveness of their segmentation results
and hinders their practical applications.

To address the aforementioned challenges, we propose an
end-to-end roof plane segmentation network that integrates a
Point-cloud Upsampling module and Transformer (PUTr). The
primary contributions of this research can be summarized as
follows:

1) Through the specialized upsampling module introduced
in our proposed PUTr model, we have conducted reasonable
adaptive upsampling on RoofN3D, the currently available
public dataset for roof plane segmentation, to achieve standard
point density. This enables the network models trained using
the RoofN3D dataset to possess a certain level of
generalization and improves the situation of the lack of
available public datasets in the field of plane segmentation.

2) An improved end-to-end roof plane segmentation
network called PUTr is proposed by us. By incorporating a
Transformer with channel-wise attention into roof plane
segmentation, we enhance the ability to capture crucial features,
thereby improving the accuracy of roof plane segmentation.

II. APPROACH

This research can be considered the first application of
Transformers to point cloud roof plane segmentation,
augmented with a adaptive upsampling module, enabling
efficient processing and generalization of roof plane
segmentation. Firstly, we introduce the upsampling module and
Transformer module in our network. Finally, we present the
overall architecture of PUTr for handling the task of roof plane
segmentation, as illustrated in Figure 1.
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Figure 1. The Overall Architecture Of PUTr

A. Upsampling module
In the field of computer vision, researchers have utilized

deep learning-based super-resolution reconstruction algorithms
to restore low-resolution images to their corresponding high-
resolution counterparts, addressing issues such as image blur
and low quality in image acquisition.

Our upsampling module is influenced by [15] and
improved upon accordingly.Instead of opting for a fixed
upsampling rate, we attempted adaptive upsampling of the
RoofN3D dataset. This approach allows for adaptive
upsampling based on the current input of the original point
cloud, enabling it to approximate standard point cloud density.
Consequently, the trained point cloud roof plane segmentation
model exhibits generality.The upsampling module takes a low-
density N × 3 point set as input. Initially, it employs the group
feature extraction proposed by PointNet++ to obtain three-
dimensional features, denoted as N/2 × C1, N/4 × C2, and N/
8 × C3 . Subsequently, the interpolation method from
PointNet++ is used to restore the three multidimensional
features to the original point's feature dimension and aggregate
them, resulting in a feature dimension of N × C' . Then, the
feature expansion is performed on f using separable
convolution. Since points and features are interchangeable, the
number of expanded features in the expansion space is
equivalent to the number of points, resulting in the conversion
of the expanded tensor N × rC1

' to a new feature f' of size rN ×
C1

' , where r represents the adaptively learned upsampling rate
based on the original point cloud density. Finally, a uniform
and dense point cloud of size rN × 3 is obtained through fully
connected layers.

Then, we incorporate KD-tree-based neighborhood search
during upsampling, along with the original point cloud's label
data. This approach allows us to compute the magnitude of

each class label within the neighborhood and determine the
label of the current augmented point based on the relative
quantities of each class label.Examples of the results after
applying the upsampling module can be seen in Figure 2.

Figure 2. Four-slope roof with upsampling module results.

B. Transformer Layer
Due to the inherently irregular nature of point clouds,

which are embedded in metric space, attention mechanisms are
particularly suitable for processing point clouds. To ensure
different attention weights between queries and key points for
each channel, we utilize the Channel Attention (CA) method to
build local attention and global attention, forming Transformer
layers. This allows the model to capture not only short-distance
local information but also long-distance global information.
The formula for Channel Attention (CA) is as follows:

�i,c =
exp(ℳ'([ℛ'(f1, f2); ϕ(xi)]/τ)c)
exp(ℳ'([ℛ'(f1, f2); ϕ(xi)]/τ)c)� (1)

CA xi, fi = �i,c ⊙ ℳ([ℛ(f1, f2); ϕ(xi)]� (2)
Where xi and fi represent the position coordinates and

corresponding features of the query point. ϕ(xi) normalizes the
position coordinates, and f1, f2 undergo linear transformations
on the features. ℛ represents the relationship function between
the two transformed features (e.g., f1 − f2), and ℳ denotes the
mapping function. �i,c is the channel-wise attention, where c
represents the channel index, and τ denotes the temperature
coefficient.



Local Attention We utilize spherical queries to capture
local neighborhoods, where local point groups are formed by
anchor points and points queried within the spherical
neighborhood. Local attention can be defined as:

yi
LA = CA xi, fi, xj j∈�i

, fj j∈�i
(3)

Where �i represents the local group captured by anchor
point xi . yi

LA is the output feature vector of local attention,
similarly employing channel-wise attention.

Global Attention We also consider utilizing attention
mechanisms to capture global features. However, directly
applying attention mechanisms to the original points without
any processing would incur a significant computational cost,
affecting the efficiency of the network. Therefore, we first
perform uniform downsampling on the point cloud,
representing global information with fewer points without
compromising performance. Global attention can be defined as:

yi
GA = CA xi, fi, δs s=1

S , ηs s=1
S (4)

Where S represents the set of sampled points, δs and ηs
denote the position information and corresponding features of
the current sampled point, and yi

GA is the output global
attention feature vector.

C. Network architectures
The entire network consists of two components: an

upsampling module and a backbone network based on
Transformer blocks. To address the issue of low point density
in the RoofN3D dataset and to enhance the model's
universality, we preprocess the dataset using the upsampling
module to obtain a dataset with standard point density.
Subsequently, the data is fed into the backbone network based
on the U-Net design. The encoder mainly consists of
Transformer blocks. To enhance representational capacity, the
input data is first processed through an MLP. The entire
process undergoes five stages of downsampling, where furthest
point sampling (FPS) is utilized to obtain sampled points,
which are then fed into MLP or Transformer blocks. The
decoder is coupled with the symmetric encoder, combining
interpolated point features with the corresponding level
encoder features provided by skip connections. This combined
data undergoes processing through linear layers, batch
normalization, and ReLU activation. Finally, through trilinear
interpolation, the low-level features are mapped to the high-
level features for feature expansion.

Finally, to enhance the model's ability to capture
representations, we first apply max pooling or average pooling
to the low-level features learned by the backbone network,
allowing for better capture of global context information. Then,
we use an MLP to map the learned features to the probability
distribution of each point belonging to a specific plane, thereby
achieving end-to-end roof plane segmentation directly.

III. EXPERIMENTS AND ANALYSIS

A. Experimental environment and data
The experiments were conducted on the RoofN3D dataset.

We filtered the dataset to include only roof buildings with
more than 700 points, covering 11,180 roofs. With sufficient
training data, we ensured that the shape details of the roof
buildings were preserved. Finally, the training, validation, and

test sets consisted of 9,503, 1,118, and 559 samples,
respectively. The model was trained using a smoothed cross-
entropy loss function. For evaluation metrics, we used the
mean Intersection over Union (mIoU) and Overall Point-wise
Accuracy (OA).

B. Experimental Result
The network is evaluated on the RoofN3D dataset for the

task of building roof plane segmentation. Since there are
relatively few network models specifically designed for roof
plane segmentation based on point cloud deep learning, we
consider adaptively improving network models for other point
cloud segmentation tasks and conduct comparative
experiments. The results of the comparative experiments are as
follows.

Figure 3. Visual comparison of PointTransformers (PT), Relabeling-based
(BR), and the proposed method (PUTr) in the task of roof plane segmentation.

TABLE I. THE RESULTS OF ROOF PLANE SEGMENTATION ON THE
ROOFN3D DATASET

Method OA(%) mIoU(%)
Convpoint[16] 86.9 80.3

PT 89.2 83.5
BR 91.4 83.2

PUTr（ours） 93.8 86.9

Figure 3 presents the visual comparison results between
ground truth and those generated by different methods. Due to
the presence of a small number of unfiltered background points
in the dataset, we filtered out noise to better demonstrate the
segmentation results. We observed that directly applying
methods designed for other tasks to roof plane segmentation,
such as PT, does not yield satisfactory segmentation results.
There tends to be a certain degree of over-segmentation and
under-segmentation, particularly concentrated at boundary
intersections. Meanwhile, the traditional method BR [8]
exhibits suboptimal performance in handling pyramid roofs,
and furthermore, when dealing with large sample datasets,
manual parameter adjustments are frequently required, leading
to reduced efficiency. Additionally, Table I presents the
quantitative results of different methods for roof plane
segmentation in point cloud buildings. Our proposed method,
which integrates advanced network architecture with unique
modules, demonstrates superior representation and
generalization capabilities. It achieves strong segmentation



results on the RoofN3D dataset, with an OA of 93.8% and an
mIoU of 86.9%, outperforming other methods.

C. Ablation Studies
We have conducted some ablation experiments to examine

specific design decisions in PUTr and to facilitate further
discussion. These studies are still based on the RoofN3D
dataset for roof plane segmentation.

TABLE II. ABLATION EXPERIMENT: WITH/WITHOUT UPSAMPLING
MODULE AND UPSAMPLING RATE R

Upsampling Module Upsampling Rate(r) OA(%) mIoU(%)

Without - 90.1 84.7

With
2 91.9 85.5
3 94.2±0.2 89.6

self-adaptation 94.4±0.1 89.6
Upsampling Module. First, we investigated the choice of

the upsampling module. To validate the impact of the
upsampling module on the generality of our network, we
selected 207 high-density roofs with more than 2048 points
from RoofN3D as test samples. The results are shown in Table
Ⅱ. It can be observed that the performance improves when the
upsampling module is used compared to when it is not,
indicating that the model's generalization ability is enhanced.
This enables the model to effectively handle modern high-
density point cloud data. When we replace the fixed
upsampling rate with an adaptive upsampling rate tailored to
the current input sample, we effectively avoid issues associated
with low-density training samples (r=2) and unnecessary
upsampling (r=3). This enhances our model's versatility and
efficiency, allowing it to effectively handle high-density point
clouds captured by modern scanning devices.

TABLE III. ABLATION EXPERIMENT: ATTENTION TYPES

Attention Types OA(%) mIoU(%)
MLP 82.1 76.8

MLP+Pooling 87.2 80.6
Standard Att. 89.2 83.5

Ours 93.8 86.9
Attention Types. Now, we investigate the type of attention

mechanism in the PUTr network. The results are shown in
Table Ⅲ , where we compare four different scenarios.
Compared to MLP and the standard attention mechanism, we
can observe that our channel attention is more expressive. This
indicates that, compared to MLP or standard attention
mechanisms, channel-wise attention is more powerful in
representing point clouds.

IV. CONCLUSION
In this paper, we propose PUTr, an end-to-end network for

handling sparse point cloud roof plane segmentation, which
solves the problems of low automation and reliance on manual
intervention of existing roof plane segmentation methods, and
the lack of generality of deep learn-based methods due to
scarcity of data sets, showing versatility. In the future, we will
focus on simplifying complex roofs by decomposing them into
simpler components, aiming to enhance generalization
capabilities when handling intricate roof structures.

Additionally, we hope for the availability of more high-quality,
multi-class roof building datasets in the future, which will
enable us to further improve our method and enhance its
capability to handle segmentation of complex roofs with
multiple categories.
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