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Abstract— Addressing the challenges posed by the insufficient
computational power of low-spec devices to achieve the infer-
ence efficiency of prevailing deep learning models, alongside
the variability in type and shape within industrial metal sheet
datasets, while also catering to the demand for high-precision
detection, this paper proposes a novel single-stage detection
architecture termed MTRNet. In this paper, we introduce three
key enhancements: Firstly, to reduce the number of parameters,
we propose a novel Partial Depth Convolution (PDC) structure.
By minimizing redundant computations, we aim to enhance the
efficiency of spatial feature extraction. Secondly, we propose
a Convolution Transformer (CTR) structure that replaces
the self-attention module with a convolutional module. This
modification addresses the computational inefficiency inherent
in the self-attention mechanism of existing Visual Transformers
(ViT). Finally, we introduce a novel Attention Convolution
Transformer (ACTR) structure to enhance the extraction of
global and local feature information. This architecture seam-
lessly integrates the strengths of both attention and convolution
mechanisms, working synergistically to improve performance.
Our proposed MTRNet network demonstrates superior detec-
tion performance compared to existing industrial standards,
achieving a detection accuracy of 81.5% on the NEU-DET
dataset.

Index Terms— Defect Detection, Visual Transformer, Hybrid
Structures, Convolutional Neural Networks

I. INTRODUCTION

In the manufacturing process of sheet metal, the metal
surface frequently encounters environmental factors such as
extrusion, friction, oxidation, and chemical corrosion, leading
to diverse surface defects that compromise the sheet metal
quality. Consequently, machine vision inspection technology
has witnessed rapid advancements in addressing the de-
mands of industrial defect detection. Propelled by continuous
breakthroughs in deep learning, numerous researchers have
introduced a spectrum of deep learning algorithms [1]–[3].
In recent years, Transformer [4] has garnered significant
attention within the industry owing to its remarkable capabil-
ity in capturing long-range dependencies, thereby achieving
notable success in domains such as target detection [5] and
image classification [6].

Presently, the most prevalent detector models in the in-
dustry are one-stage detectors, owing to their capacity to
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deliver expedited detection speeds and consistent detection
accuracy essential for real-time detection tasks. An illus-
trative example is the YOLO series [7]–[9]. Experimental
evidence has demonstrated that while mainstream gener-
alized models in the field of defect detection on metal
plate surfaces have achieved competitive performance, they
still exhibit challenges, including high false detection and
leakage rates. These challenges are particularly pronounced
in handling global and minute features such as stains and
scratches. Furthermore, defect detection devices for sheet
metal surfaces based on deep learning encounter issues such
as large model sizes, slow recognition response times, and
limitations in industrial deployment feasibility.

II. METHOD

The structure of the MTRNet model proposed in this paper
is illustrated in Fig 1. Upon input of the image, standard con-
volution operations are employed to adjust the image size and
channels, facilitating feature information extraction through
the CTR and ACTR modules. Subsequently, the Partial Depth
Convolution (PDC) module consolidates shallow and deep
feature information, enabling the extraction of minute local
defects. Ultimately, detection is executed via the Detect layer.
The detailed design of the PDC, CTR, and ACTR modules
is elaborated in the subsequent section.

A. Partial Depth Convolution (PDC)

Convolutional Neural Networks (CNNs) have demon-
strated strong performance in various vision tasks, with
models such as VGGNet [10], GoogleNet [11], ResNet [12],
and MobileNet [13] being extensively utilized. However,
CNNs entail significant computational costs when applied to
defect detection on sheet metal surfaces. Hence, we propose
a novel convolutional structure to enhance detection accuracy
by reducing parameter overhead.

We propose the PDC convolution module structure, as
shown in Fig 1. During feature extraction, redundant infor-
mation can arise; therefore, we introduce a partial convolu-
tion (PConv) [14] operation that extracts feature information
only for a part of the channels. This approach improves
computational efficiency while maintaining detection accu-
racy. Additionally, we employ depth convolution to reduce
parameter count while capturing spatial features. Standard
convolution facilitates cross-channel information interaction,
enabling effective spatial and channel-wise feature extrac-
tion. We integrate residual concatenation into the PDC struc-
ture to enhance performance and propagate gradients across
layers, facilitating multi-scale feature capture. Experimental



Fig. 1. Structure Diagram of the MTRNet Model.

results validate the efficacy of our approach. In the MTRNet
model, the PDC module further integrates different feature
types by fusing shallow features from the CTR module with
deeper features from the ACTR module, thereby enhancing
defect detection and optimizing small defect extraction in
metal sheets. The relevant formulas are provided below.

φ (X) = pF 3×3
(
F 1×1

(
dF 3×3

(
pF 3×3 (X)

))
+ pF 3×3 (X)

)
(1)

φ(X) represents the output of the PDC model structure,
where pF3×3 denotes the PConv convolution with a 3 × 3
kernel, F 1×1 represents the ordinary convolution with a 1×1
kernel, dF3×3 indicates the depthwise separable convolution
with a 3× 3 kernel, and X denotes the input feature map.

B. Convolution Transformer (CTR)

Transformers have made remarkable advancements in ad-
dressing vision tasks; however, their computational com-
plexity remains a significant concern. Recent studies such
as EdgeViTs [15] have demonstrated improved performance
by simplifying the model structure. Nevertheless, traditional

Transformers encounter limitations when applied to the sheet
metal dataset due to the abundance of localized features.

In practical applications constrained by limited computa-
tional resources, designing more lightweight model archi-
tectures is necessary. Considering the prevalence of local
features within most metal sheet datasets, we introduce the
CTR model structure, depicted schematically in Fig 1. While
vision transformer(ViT) [16] enhances the model’s long-
range dependencies through the self-attention mechanism,
it overlooks the slices’ local relationships and structural
information. To address this, we incorporate convolutional
neural networks to substitute the self-attention mechanism
of ViT. Convolutional neural networks are proficient in
extracting local features and entail fewer parameters than
ViT’s self-attention mechanism, thus maintaining the model’s
real-time performance. Moreover, the CTR model aligns with
the MetaFormer [17] generic architecture. Consequently, this
approach circumvents the drawbacks of extensive computa-
tion and impractical deployment associated with the self-
attention mechanism and enhances the model’s capability



to extract local feature defects. The relevant formulas are
provided below.

MLP (X) = Pe (Linear (Linear (Fl (X))) + Fl (X))
(2)

ω = (X + φ (X)) +MLP (X + φ (X)) (3)

Pe is the operation to restore the feature map to its original
dimension, Fl flattens the feature map, and ω represents the
output of the CTR model.

C. Attention Convolution Transformer (ACTR)

Although the CTR model has demonstrated exemplary
performance in extracting local information, there is still
room for improvement in acquiring both global and local
information, particularly for global defects such as scratches
and wrinkles on the surface of the metal sheet dataset.
Therefore, leveraging the self-attention mechanism of ViT to
extract global features remains necessary. Previous studies
have indicated that Transformers may compromise the ex-
traction of local information to some extent [18], potentially
affecting details such as local texture. ViTAE [19] proposed
a method that utilizes both convolutional and self-attention
modules in parallel to address this issue, but its complexity
is high.

In response to the abovementioned challenges, this paper
introduces a novel hybrid model structure, ACTR, depicted
in Fig 1. To mitigate redundant feature information and
further reduce parameter count, we propose novel models
of sparse self-attention, termed Bottleneck Convolutional
Self-Attention (BCSA) structures. Initially, depthwise sep-
arable convolution and ordinary convolution are employed
for spatial downsampling to decrease the dimensionality of
the feature map upon entering the self-attention mechanism.
Subsequently, a proportional sparsity operation is applied to
K and V using average pooling. The global self-attention
mechanism aggregates information in the feature maps cap-
tured by convolution. Finally, convolution is reapplied for
upsampling to restore the dimensionality of the feature
map. This sparse attention method has been experimentally
validated to demonstrate competitive performance. However,
reducing the feature map to such a small size results in losing
significant local information, which ViT may exacerbate.
Therefore, we propose a fusion approach that combines the
sparse self-attention structure BCSA with the convolutional
neural network PDC to integrate feature information and
synergistically address the challenge of the model losing
local information. Additionally, the MLP layer captures the
nonlinear relationships between features to extract more
essential and significant features. Our proposed ACTR model
structure effectively extracts global and local information,
enhancing the overall modelling capability. The relevant
formulas are provided below.
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(
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)
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(
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(4)
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(5)

δ (X) = X + η (X) + φ (X + η (X)) (6)

M = δ (X) +MLP (δ (X)) (7)

X represents the feature map representing the input,
and WQ, WK , and WV are the learned weight matrices.
At represents the standard self-attention with the formula
At (Q,K, V ) = softmax

(
QKT

√
dk

)
V . Where QKT

√
dk

is
the attention score obtained by dividing the dot product of
the query vector and the key vector by the scaling factor√
dk , where dk is the dimension of the key vector, and the

softmax function converts the attention score to be between
0 and 1. Lw is the result obtained after sparsifying K and
V . η(X) represents the output of the sparse attention model
structure BCSA, where dF3×3 denotes depthwise separable
convolution with a 3×3 kernel, and F 1×1 represents standard
convolution. δ(X) represents the output after the fusion of
the convolution module PDC and the self-attention BCSA.
M represents the output of the model structure ACTR, and
MLP refers to our fully connected layer.

III. EXPERIMENTS

A. DataSet

The publicly available datasets in this study comprise
the Steel Surface Defect Dataset (NEU-DET) provided by
Northeastern University. The NEU-DET dataset contains
six typical surface defects found on hot-rolled strip steel:
rolled-in scale, patches, crazing, pitted surface, inclusion, and
scratches. It comprises 1,800 samples, each image weighing
200 × 200 pixels.

B. Device

The experiment was conducted on a Linux system with
PyTorch 1.9.1, CUDA 11.4, and cuDNN 8.0. The NVIDIA
RTX A6000 graphics card was utilized for all experiments.
An SGD optimizer was employed with an initial learning
rate of 0.01, 500 training epochs, and a zero initialization
seed.

C. Comparison and ablation experiments

Table I compares experiments between our proposed
MTRNet model and existing models on the NEU-DET
dataset. Our model is evaluated against advanced indus-
trial detection models, including PPYOLOE-s, PicoDet, and
others. Experimental results demonstrate that the detection
precision and recall rate of our proposed MTRNet model
exceed 80%, with performance surpassing PPYOLOE-s by
3.6% and PicoDet by 3.8% on mAP@0.5. Additionally,
on mAP@0.5:0.95, our model outperforms PPYOLOE-s by
2.4% and PicoDet by 2.3%. Notably, our model achieves su-
perior detection performance compared to existing industrial
detection models on the NEU-DET dataset.

The MTRNet, our designed single-stage detector, under-
went ablation experiments on the innovative module us-
ing YOLOv5s as the baseline on the NEU-DET dataset.
Results presented in Table II demonstrate significant im-
provements with each modified module: detection accuracy
increased from 76.9% to 81.5%, recall rate improved from
74.6% to 80.4%, mAP@0.5 rose from 80.3% to 82.2%,



TABLE I
COMPARATIVE EXPERIMENTS OF MTRNET AND OTHER MODELS ON

THE NEU-DET DATASET ARE PRESENTED.

Detection Detection Result
Model Precision Recall mAP@.5 mAP@.5-.95

YOLOv3 76.1% 75.5% 78.6% 41.2%
YOLOv4 78.1% 74.5% 79.1% 41.0%
YOLOv5s 76.9% 74.6% 80.3% 41.5%

YOLOv7-T 73.2% 70.1% 74.6% 38.8%
YOLOv8 78.4% 77.3% 78.7% 39.7%

YOLOR-P6 75.9% 74.7% 75.2% 39.3%
PPYOLOE-s 78.0% 73.9% 78.6% 42.1%

PicoDet 77.6% 78.2% 78.4% 42.2%
MTRNet 81.5% 80.4% 82.2% 44.5%

mAP@0.5:0.95 increased from 41.5% to 44.5%. At the same
time, the parameter count decreased from 7.02M to 6.98M.
The overall parameter count of our proposed model is lower
than the Baseline while achieving improved accuracy.

TABLE II
ABLATION EXPERIMENTS WERE CONDUCTED ON THE NEU-DET

DATASET TO ASSESS THE IMPROVED MODULE

Detection Detection Result
Model Precision Recall mAP@.5 mAP@.5-.95 Param

BaseLine 76.9% 74.6% 80.3% 41.5% 7.02M
PDC 77.7% 76.5% 80.4% 43.1% 6.92M
CTR 77.5% 77.8% 80.2% 43.5% 6.88M

ACTR 77.3% 76.9% 80.8% 43.3% 6.91M
CTR+ACTR 78.2% 79.0% 81.6% 43.7% 6.95M

All 81.5% 80.4% 82.2% 44.5% 6.98M

IV. CONCLSION

This paper introduces MTRNet, featuring a Partial Depth
Convolution (PDC) structure designed to reduce parameter
count and optimize the standard convolutional architecture
effectively. Given the prevalence of localized defects in metal
sheets, we advocate for adopting convolutional neural net-
works as an alternative to self-attention mechanisms, aiming
to streamline model complexity while bolstering its capacity
to extract local features. Furthermore, we propose a hybrid
architecture integrating sparse self-attention and CNNs to
encapsulate global feature information. Experimental results
validate the superior performance of our proposed model.
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