
Vulnerability Detection Based on Adapter Tuning
and Enhanced Feature Learning

Hui Luoa,b, Lu Lua,c,∗, Zhihong Liangd,e, Siliang Suod,e
a School of Computer Science and Engineering, South China University of Technology, Guangzhou, China

b Pazhou Laboratory, Guangzhou, China
c PengCheng Laboratory, Shenzhen, China

d Electric Power Research Institute, CSG, Guangzhou Guangdong, China
e Guangdong Provincial Key Laboratory of Power System Network Security, Guangzhou Guangdong, China

∗ Corresponding author email: lul@scut.edu.cn

Abstract—Pre-trained code models have achieved promising
results in the vulnerability detection field. The prevailing ap-
proach is to adapt these models with vulnerability datasets
using inefficient full-model fine-tuning. These pre-trained models
primarily capture the semantic features of code, while neglecting
its structural characteristics. To address these issues, this paper
proposes a vulnerability detection method with adapter tuning
and enhanced feature learning. First, adapter modules are
introduced to UniXcoder and tune only the parameters in the
adapters to extract semantic features. This significantly reduces
the number of training parameters and better adapts the model
to downstream tasks. Then, structural features, including control
and data flow information, are extracted from the Program
Dependence Graph (PDG) to compensate for the limitations of
pre-trained models that rely solely on semantic features. Finally,
the semantic and structural features are integrated to train the
detection model. The experimental results demonstrate that our
proposed method outperforms state-of-the-art approaches and is
highly efficient in terms of both training parameters and training
data.

Index Terms—Vulnerability Detection, Adapter Tuning, En-
hanced Feature Representation, Code Pre-trained Models

I. INTRODUCTION

Deep learning (DL) has been widely applied in industry
for detecting both industrial defects and software defects [1]–
[3]. With the rise of large pre-trained code models such as
CodeBERT [4] and CodeT5 [5], many researchers adopt the
pre-training and finetuning paradigm to detect vulnerabilities
and acquire promising results. However, these approaches still
have some limitations.

Firstly, most large pre-trained code models are adapted to
vulnerability detection through full-model fine-tuning [6] [7].
However, these pre-trained models have not been trained
specifically for vulnerability detection, so full fine-tuning
struggles to bridge the gap with vulnerability detection [8].
Moreover, fine-tuning billions of parameters results in high re-
source consumption and suboptimal trained models on down-
stream tasks.

Secondly, code pre-trained models focus on the semantic
features of the code and ignore the rich structural information
in the source code. There is abundant structural information

* is the corresponding author.

in source code, including data and control dependencies,
which have been demonstrated to be an important part of
vulnerability features [9]. Many researchers convert code into
intermediate representations, such as Abstract Syntax Tree
(AST), Control Flow Graph (CFG), and Program Dependence
Graph (PDG) [10], and then extract relevant features from
these representations for vulnerability detection.

To solve the above problems, we propose ATEFL, a
function-level software vulnerability detection method with
adapter tuning and enhanced feature learning. To tackle the
first issue, ATEFL employs adapter tuning to fine-tune UniX-
coder for semantic features extraction. Adapter tuning is
one of the parameter-efficient fine-tuning(PEFT) methods and
achieves comparable or even superior performance to full-
model fine-tuning. To solve the second issue, we extracted data
and control flow paths from PDG to offer additional structural
features. By integrating semantic and structural information,
ATEFL learns more comprehensive features related to vulner-
abilities. In summary, the major contributions of our work are
as follows:

• To alleviate the resource consumption of fine-tuning pre-
trained models for vulnerability detection, we introduce
adapter-tuning, significantly reducing the training param-
eters while achieving a slight performance improvement.

• We propose ATEFL, a vulnerability detection method
based on adapter tuning and enhanced features comprised
of semantic and structural features.

• We conducted extensive experiments to demonstrate the
effectiveness of ATEFL. The experiment results show that
ATEFL outperforms many current vulnerability detection
methods and can learn rich feature representations even
with limited data.

II. RELATED WORK

A. DL-Based Software Vulnerability detection
Due to the powerful representation capabilities of deep

learning, many DL methods have been employed to auto-
matically learn vulnerability patterns and detect them from
historical data.

Dam et al. [1] parse source code into AST sequences and
use LSTM networks to learn the vector representations for



1

2

3 4

5

1 2 4 5

1 2 3 5

2 5

1 3 5

E[CLS] E1 EnE[Enc]

E[SE

P]
…

C T1 TnT[Enc]

T[SE

P]
…

Adapter-UniXcoder

Doc2vec
Control

Data

Semantic 

Feature

Structural

Feature

Semantic Extractor

Structural Extractor

C
la

ssifier

Feature Extraction Feature Learning

Enhanced code representation

Feature Extraction Feature Learning
Vulnerability 

Detection

Structural

path

Structural

vector

PDG Path Extraction Path Embedding

Trained 

Model

Source

Code

Fig. 1. Overview of Our Proposed ATEFL.

vulnerability detection. However, the method treated source
code as flat sequences, overlooking the rich structural and
semantic information in code graphs.

Graph Neural Network(GNN) has been demonstrated ex-
cellent performance in graph learning and widely applied in
software vulnerability detection. Cao et al. [11] propose MVD,
which utilizes GNN to learn flow information from both PDG
and Call Graph (CG) to detect memory-related vulnerabilities.

Pre-trained code models have achieved significant success in
various software engineering tasks, such as code understanding
and code generation. Recently, many pre-trained code models
have been employed for vulnerability detection. Fu et al. [6]
downloaded the pre-trained CodeBERT tokenizer and weights
and fine-tune them on the Big-Vul dataset, achieving the state-
of-the-art performance. Wang et al. [5] introduce CodeT5,
an pre-trained encoder-decoder model. CodeT5 outperformes
both CodeBERT and GraphCodeBERT on the devign dataset.

B. Parameter-Effecient Fine-Tuning

Parameter-efficient fine-tuning (PEFT) aims to alleviate the
cost and time required for fine-tuning pre-trained models
on downstream tasks. Xie et al. Wang et al. [12] introduce
adapter tuning to pre-trained code models for code search and
summarization tasks. Ayupov [13] study the use of adapter
tuning and low-rank adaptation (LoRA) across four code
processing tasks and find that these methods achieve better
performance than full-model fine-tuning in code understanding
tasks.

III. METHOD

A. Overall Framework

As illustrated in Fig. 1, ATEFL consists of two main
components: (i) feature extraction, where semantic features

are extracted by applying adapter tuning to the UniXcoder
model and structural features are extracted from the paths of
the Program Dependence Graph (PDG). (ii) model training
and detection, where the two types of features extracted
earlier are combined for learning. Once the model has been
trained with optimal parameters, it can be employed to detect
vulnerabilities in the code.

B. Feature extraction

The purpose of feature extraction is to convert the semantic
and structural information of the code into vector represen-
tations, which can then be fed into neural networks to learn
features related to vulnerabilities.

1) Semantic Feature: Given the success of pre-trained
models in various software engineering domains such as code
search and code summarization, the code pre-trained model
UniXcoder is selected to extract the semantic features of the
code. UniXcoder is a cross-modal programming language pre-
trained model that has been pre-trained on code and Abstract
Syntax Tree (AST), thereby providing a strong understanding
of code semantics. It uses prefix adapters and mask attention
matrices to control the behavior of the model, including three
modes: encoder-only, decoder-only, and encoder-decoder. The
encoder-only mode is set to generate semantic vector repre-
sentation for code.

The semantic feature extractor is shown in Fig. 2, which
takes function code as input. The code is tokenized to tokens
through the Byte Pair Encoding algorithm. Subsequently,
positional embedding and word embedding techniques are
employed to obtain the initial vector representations. Then,
the initial vector is fed into UniXcoder, which employs 12
Transformer layers to generate hidden layer representations of
the input code, denoted as HN = hN

0 , hN
1 , ..., hn − 1N . Each



function

Tokenization

[CLS]
Token

1

Token

2

Token

3
[SEP][Enc] [SEP] … Token

n-1

Token

n

Linear

Linear

Linear D
o

t 
P

ro
d

u
ct

io
in

 

A
tt

en
ti

o
n

C
o

n
ca

te
n

a
te

L
in

ea
r

A
d

d
 &

N
o

rm

L
in

ea
r

A
d

d
 &

N
o

rm

A
d

a
p

te
r

A
d

a
p

te
r

E[CLS] E1 E2 E3 E[SEP]E[Enc] E[SEP]
… En-1 En

C T1 T2 T3 T[SEP]T[Enc] T[SEP]

…
Tn-1 Tn

Word Embedding Position Embedding

Semantic Feature

x N

Adapter-UniXcoder

Fig. 2. The Structure of Semantic Extractor.

Transformer layer consists of a multi-headed self-attention
layer and a feed-forward layer. The multi-head attention
mechanism enables the model to learn various aspects of
information from different subspaces of code representations.
For Q, K, and V with a dimension of d, these vectors are
divided into heads, each with a dimension of d/h. After the
self-attention operation, all heads are concatenated back to the
original dimension and then fed into the feed-forward layer.
For the i-th layer, the output of the multi-headed self-attention
is computed using the following formula:

Q = Hi−1WQ,K = Hi−1WK , V = Hi−1WV (1)

headi = softmax(
QKT

√
dk

+M)V (2)

MultiHead = Concat(head1, ..., headh)W
O (3)

where Q, K, and V are obtained by mapping the hidden layer
output from the previous layer, and dk is the dimension of each
head. M is a mask matrix that controls the context a token can
attend to. If the i-th token can attend to the j-th token, then
Mij = 0; otherwise, Mij = ∞. During fine-tuning, the prefix
is set to encoder-only mode, allowing all tokens to attend to
each other. WO is used to linearly project to the expected
dimension following concatenation.

Down-Projection 

Layer

Nonlinerarity

Up-Projection 

Layer

Fig. 3. The Structure of Adapter.

The 125 million parameters of UniXcoder burdens the
fine-tuning process and hinders the potential performance on
vulnerability detection. Therefore, the adapters are introduced
to obtain better vector representations. Fig. 3 illustrates the
structure of the adapter. The adapter consists of two projection
layers and a non-linear layer, employing residual connections
across the adapter. As presented in Fig. 1, for each Transformer
layer in UniXcoder, the adapter is inserted after the attention
mechanism and the feed-forward layer. During fine-tuning,
only the parameters in the adapters are updated while keeping
the other pre-trained parameters frozen. Given a hidden input
vector , the output of the adapter is:

outputadapter = Wup(α(Wdownh)) + h (4)

where α is a non-linear activation function, Wup ∈ Rd×m,
Wdown ∈ Rm×d are the parameters of the two projection
layers, d is the dimension of the transformer hidden layer,
and m is the dimension of the adapter layer. Typically, m is
smaller than d.

2) Structual Feature: UniXcoder is used to capture the
semantic information of code, but it does not utilize the struc-
tural information in the source code. Structural information
is a crucial part of the source code, typically containing data
dependencies and control dependencies between statements.
PDG is introduced to extract the rich structural information
from the source code. The PDG of a function can be denoted
as g = (V,E), where V denotes a set of nodes corresponding
to statements in the function, and E represents the data or
control dependencies between the nodes.

The Joern is used to convert functions into their corre-
sponding PDGs. Inspired by vagavolu [14], we extract node
paths from the PDG as the structural features, including
data dependency paths and control dependency paths. Each
node in the PDG converted by Joern is represented by two
attributes: node type d and node code token t. A path is
represented as a sequence of nodes, where all edges on
this path have the same label. Specifically, paths with data
dependency labels are classified as data dependency paths,
while those with control dependency labels are classified
as control dependency paths. The path representation is a
sequence pi = (t1, l1, t2, l2, ..., tk, lk), where ti is the type
of node i, li ∈ (data, control) represents the type of edge
between node i and node i− 1. In this section, the structural
features of a function are represented as S = (s1, s2, ..., sm),
where si = (s, p, e) represents a data flow path or control
flow path between node s and node e. After obtaining the
structural features of a function, they need to be converted into
vector representations for input into neural networks. Since
the number and length of extracted paths from each function
vary, we use Doc2Vec to convert the structural features of each
function into vector representations.

C. Training

In this section, the semantic and structural features are
trained together to effectively learn the combined feature
representation of code.



The structural feature vectors obtained through Doc2Vec
do not have the same dimension as the semantic feature
vectors generated by UniXcoder, so these vectors are aligned
to the same dimension. Specifically, for each function, the
semantic feature vector output by adapter-tuned UniXcoder
is Vsemantic ∈ R512×768. In classification tasks, the final
hidden layer representation of the [CLS] token is taken as
the semantic feature of the input code. It has learned the
semantics of all tokens through the attention mechanism. The
structural feature vector generated by Doc2Vec is denoted
as Vstructual ∈ R512. To prevent the semantic vectors from
having greater weight than the structural vectors due to the
difference in length during training, the structural feature is
mapped into R768 by a linear layer. The final feature vector
is V = concat(Vsemantic, Vstructual) ∈ R1536.

After learning the composite features of the code, the
final step is to train a vulnerability detection model. First,
the learned composite features are fed into a multi-layer
perceptron (MLP) for binary classification task. The model
is iteratively trained on the training set, monitoring the loss
function and optimizing the feature weights through backprop-
agation. The optimization continues for several epochs, and
early stopping is employed during training to avoid overfitting.
For the loss function, since vulnerability detection is a binary
classification task, the binary cross-entropy loss function is
used:

Lce = −yi log(pi) + (1− yi) log(1− pi) (5)

where yi represents the true label, pi is the predicted proba-
bility.

Secondly, many dropout layers are used in the pre-trained
model to prevent overfitting, resulting in slight variations in
the output for the same input. Therefore, KL divergence is
applied to penalise the model for inconsistent outputs given
the same input.

KL(P ∥ Q) =

N∑
i=1

P (xi) log
P (xi)

Q(xi)
(6)

where P and Q represent two probability distributions.
The KL-loss is computed as follows:

Lkl =
1

2
[KL(P1 ∥ P2) +KL(P2 ∥ P1)] (7)

where P1 and P2 are the two output probability distributions
of the same input.

The final loss function is denoted as:

Loss = Lce + βLkl (8)

After obtaining the trained model, it can used for vulnera-
bility detection.

IV. EXPERIMENT DESIGN

A. Datasets

The benchmark dataset used in the experiments is the
FFmpeg+Qemu dataset provided by Zhou et al [9], which is
derived from two real-world projects FFmpeg and Qemu. It

contains 27k C language functions, with a defect rate of 45%.
The dataset is divided into training, validation, and test sets
with a ratio of 8:1:1.

B. Experimental Setting

The code is implemented in Pytorch. The Unixcoder model
architecture and pre-trained weights are loaded throughout the
Transformers library. Only the parameters in the adapters are
adjusted during fine-tuning while other pre-trained weights
are frozen. In code structural feature extraction, code is
transformed to PDG by Joern, and Scikit-learn is used to
train doc2vec to obtain the corresponding structural feature
vectors. All models were trained on an AMD210 with 64GB
of VRAM. The dimension of the adapter is set to 96. During
training, we used the AdamW optimizer with a batch size 32.
The learning rate is 3e-4. The maximum number of epochs
was set to 30, and early stopping was employed to obtain the
best model. The model with the best F1-score on the validation
set was saved for testing.

C. Evaluation Indicators

To comprehensively evaluate the performance of our method
in vulnerability detection, we use accuracy, precision, recall,
and F1-score as evaluation metrics. Precision measures how
many of the functions predicted to be defective are defective;
recall indicates how many of the actual vulnerabilities are cor-
rectly classified; and F1-score is often used as a comprehensive
measure of model performance. The formulas for these metrics
are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1− score =
2× Precision×Recall

Precison+Recall
(12)

D. Research Questions

To evaluate ATEFL, the experiments focus on the following
research questions:

RQ1: How effective is ATEFL in detecting vulnerabilities
at the function level?

RQ2: What is the effect of the adapter and structural
features on the performance of ATEFL?

RQ3: How does ATEFL perform under low-data condi-
tions?

To answer RQ1, the following vulnerability detection base-
lines are compared with ATEFL:

1) LineVul [6] is a transformer-based vulnerability predic-
tion method. It leverages the pre-trained model CodeBERT to
capture long-term dependencies in code sequences, enabling
it to learn rich semantic features from source code.



2) CodeT5 [5] is a variant of the text-to-text transfer
transformer, which has been pre-trained on large code corpora,
including CodeSearchNet and additional C language datasets.
CodeT5-base with 220M parameters is selected as the baseline.

3) AMPLE proposed by Wen et al [15] simplifies code
structure graphs and uses an edge-aware GCN module along
with a multi-head attention mechanism to learn long-range
dependencies in code structure graphs.

4) Devign proposed by Zhou et al [9] constructs a composite
code property graph with AST, CFG, and DFG. It employs
a Gated Graph Neural Network to extract structural features
from these rich code representations.

Additionally, ablation experiments are conducted to inves-
tigate the impact of each component on ATEFL. To answer
RQ2, the follow models are set up:

1) ATEFL wo A and S: The method using full-finetune and
semantic features only.

2) ATEFL wo S: The method uses adapter tuning but only
uses the semantic features from UniXcoder.

3) ATEFL wo A: The method using full fine-tuning instead
of adapter-tuning to fine-tune the model with semantic and
structural features.

4) ATEFL: The method with adpater tuning and semantic
and structural features.

Finally, the use of pre-trained models for vulnerability
detection typically requires a large number of training samples
to achieve good performance. RQ3 is set up to evaluate the
performance of ATEFL under low-data conditions. ATEFL is
trained on subsets comprising 1%, 10%, 20%, 30%, and 50%
of the training data from RQ1. The trained model is then tested
on the RQ1 test set and compared with LineVul and CodeT5.

V. EXPERIMENT RESULT

TABLE I
RESULTS VERSUS BASELINE METHODS

method Acc F1-score Precision Recall

LineVul 66.69 61.83 63.93 59.86
CodeT5-base 62.72 66.50 55.88 82.11
AMPLE 61.28 65.16 53.36 79.82
Devign 53.37 58.29 51.38 67.35
ATEFL 88.75 87.45 87.99 86.91

RQ1: To what extent can the function-level vulnerability
detection performance ATEFL achieve?

The experiment results are reported in Table I and the best
performances are highlighted in bold. It is found that ATEFL
outperforms all the baselines in all metrics. Specifically, the
acc, F1-score, recall, and precision of ATEFL are 88.75%,
87.45%, 87.99%, and 86.91%, respectively. ATEFL relatively
improves over the baselines from 33.08%-66.29% in acc, from
31.5%-50% in F1-score, from 37.63%-71.25% in Precision,
and from 5.8%-52.84% in Recall. The results indicate that
ATEFL outperforms other methods based on graph neural
networks and pre-trained models. This is because graph neural
networks typically only use structural features from the code
graph representations, while pre-trained models only leverage

the semantic features of the code. Neither approach can fully
capture the rich features related to vulnerabilities in the code.

TABLE II
PERFORMANCE COMPARISION FOR DIVERSE

VERSIONS OF ATEFL

method Acc F1-score Precision Recall

ATEFL wo A and S 64.41 62.21 59.65 65.01
ATEFL wo S 65.12 64.82 59.42 71.29
ATEFL wo A 70.27 69.34 64.77 74.61
ATEFL 88.12 86.96 87.87 86.07

TABLE III
F1-SCORE COMPARISON OF LINEVUL, CODET5, AND

ATEFL UNDER DIFFERENT DATA PORTIONS.

Portion data F1

LineVul CodeT5 ATEFL

1% 203 54.22 53.34 54.63
10% 2034 55.45 (+1.23) 56.73 (+3.39) 66.18 (+11.55)
20% 4068 57.37 (+1.92) 58.08 (+1.35) 72.10 (+5.92)
30% 6102 61.26 (+3.89) 61.28 (+3.2) 77.33 (+5.23)
50% 10170 61.52 (+0.26) 62.50 (+1.22) 82.85 (+5.52)

RQ2: How do the adapter, and structural features perform
in our method?

Table II reports the performance of four versions of
ATEFL on FFmpeg+Qemu. The baseline is ATEFLwo A and S,
which only relies semantic features extracted from UniX-
coder throughout full fine-tuning. In the training phase,
ATEFLwo A and S needs to update about 127M parameters.

Compared with ATEFLwo A and S, ATEFLwo S achieves an
absolute improvement of 0.71%, 2.61%, and 6.28% in accu-
racy, F1-score, and recall. It should be noted that the training
parameters of the model are only 3.67M, which is 2.89% of the
UniXcoder. The results demonstrate the efficiency of applying
adapter tuning in vulnerability detection. It significantly re-
duces the number of training parameters, saves computational
resources, and achieves superior performance.

To evaluate the contribution of structural features,
ATEFLwo A integrates structural and semantic features for
vulnerability detection. It improves the baseline by 5.86%,
7.13%, 12%, and 9.6% in terms of accuracy, F1-score, pre-
cision, and recall, respectively. The improvements indicate the
effectiveness of structural features in vulnerability detection,
which contain critical information related to vulnerabilities and
greatly improve the performance of the model.

Comparing ATEFL with the previous three models, combin-
ing the adapter and structural features has better performance
than adding them separately. This suggests that full fine-
tuning may hinder the effectiveness of structural features,
which may be attributed to the huge number of parameters
updated during full fine-tuning. In cases of insufficient data,
full fine-tuning may fail to adequately learn optimal feature
representations in the specific dataset. It primarily leverages
the prior knowledge from pre-training, which is not readily
transferable to downstream tasks. In contrast, training only



the adapter parameters enables the model to effectively learn
the specific knowledge of the studied dataset.

L i n e V u l C o d e T 5 A T E F L
4 0

5 0

6 0

7 0

8 0

9 0
F1

M o d e l

 0 . 0 1
 0 . 1
 0 . 2
 0 . 3
 0 . 5

Fig. 4. F1 Comparision for LineVul, CodeT5 and ATEFL on
limited data

RQ3: How does ATEFL perform with a limited amount of
data?

Table 3 presents the F1-score of ATEFL on the reduced
training set compared with state-of-the-art methods, LineVul
and CodeT5. The value in parentheses following the F1-
score indicates an improvement in comparision with the F1-
score of the previous line. The column ’data’ indicates the
number of samples in the training subsets. Fig. 4 presents
the performance of ATEFL over reduced training dataset sizes
compared to LineVul and CodeT5. It can be observed that
ATEFL outperforms LineVul and CodeT5 across all portions.
Additionally, ATEFL demonstrates the highest data efficiency.
Using the 1% portion dataset as the baseline for all methods,
the F1 scores for Linevul, CodeT5, and ATEFL are 54.22%,
53.34%, and 54.63%, respectively. As the size of dataset
increases to 10%, the F1 scores of LineVul and CodeT5
improve by 1.3% and 3.4%, respectively, while ATEFL shows
an 11.6% improvement. As the portion of data increases from
10% to 50%, ATEFL achieves an average improvement of
5.5%, whereas LineVul and CodeT5 show improvements of
only 2% and 1.9%, respectively.

VI. CONCLUSION

This paper proposes ATEFL, a novel vulnerability detection
framework with adapter tuning and enhanced feature learning.
ATEFL leverages adapter tuning to fine-tune UniXcoder for
extracting semantic features from the code and integrates the
structural features from the PDG for joint learning in vul-
nerability detection. Extensive experiments demonstrate that
the model exhibits superior performance and high efficiency.
It outperforms many state-of-the-art methods and showcases
efficiency in terms of computational resources and training
data utilization. Even in a low-data scenario, ATEFL maintains
satisfactory performance.

In the future, we will explore more PEFT methods for var-
ious code-related tasks. Incorporating code structural features
into pre-trained models also remains a key research direction.

ACKNOWLEDGEMENT

This work is supported in part by the Natural Science
Foundation of Guangdong Province (NO. 2024A1515010204),
the second batch of cultivation projects of Pazhou Laboratory
(NO. PZL2022KF0008) and Southern Power Grid Science
and Technology Project: Research on the construction method
of AI trusted model and performance and safety evaluation
technology (NO. ZBKJXM20232483).

REFERENCES

[1] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose,
“Automatic feature learning for vulnerability prediction,” arXiv preprint
arXiv:1708.02368, 2017.

[2] F. Zhou, H. Zhang, M. Zhe, G. Wen, H. Pan, Z. Lan, and Z. Zhang,
“A power transmission line and its defect detection method based on
data enhancement,augmentation and neural network,” Southern Power
System Technology, vol. 16, no. 09, pp. 131–142, 2022.

[3] P. Li, R. Liu, J. Zhou, and T. Zhao, “X-ray image intelligent recognition
of crimping defects of strain clamps based on deep learning,” Southern
Power System Technology, vol. 16, no. 03, pp. 126–133, 2022.

[4] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536–1547.

[5] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, pp. 8696–8708.

[6] M. Fu and C. Tantithamthavorn, “Linevul: A transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories, 2022, pp. 608–620.

[7] S. Liu, B. Wu, X. Xie, G. Meng, and Y. Liu, “Contrabert: Enhancing
code pre-trained models via contrastive learning,” in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE,
2023, pp. 2476–2487.

[8] C. Wang, Y. Yang, C. Gao, Y. Peng, H. Zhang, and M. R. Lyu, “No
more fine-tuning? an experimental evaluation of prompt tuning in code
intelligence,” in Proceedings of the 30th ACM joint European software
engineering conference and symposium on the foundations of software
engineering, 2022, pp. 382–394.

[9] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[10] Y. Mirsky, G. Macon, M. Brown, C. Yagemann, M. Pruett, E. Downing,
S. Mertoguno, and W. Lee, “Vulchecker: graph-based vulnerability
localization in source code,” in Proceedings of the 32nd USENIX
Conference on Security Symposium, 2023, pp. 6557–6574.

[11] S. Cao, X. Sun, L. Bo, R. Wu, B. Li, and C. Tao, “Mvd: memory-
related vulnerability detection based on flow-sensitive graph neural
networks,” in Proceedings of the 44th international conference on
software engineering, 2022, pp. 1456–1468.

[12] D. Wang, B. Chen, S. Li, W. Luo, S. Peng, W. Dong, and X. Liao, “One
adapter for all programming languages? adapter tuning for code search
and summarization,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 5–16.

[13] S. Ayupov and N. Chirkova, “Parameter-efficient finetuning of trans-
formers for source code,” arXiv preprint arXiv:2212.05901, 2022.

[14] D. Vagavolu, K. C. Swarna, and S. Chimalakonda, “A mocktail of source
code representations,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2021, pp. 1296–
1300.

[15] X.-C. Wen, Y. Chen, C. Gao, H. Zhang, J. M. Zhang, and Q. Liao,
“Vulnerability detection with graph simplification and enhanced graph
representation learning,” in 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering (ICSE). IEEE, 2023, pp. 2275–2286.


