
 Neo4j’s BFS and DFS Evaluation in GDS and

APOC Libraries with SPL Feature Models

Hazim Shatnawi

The George Washington University
Washington, D.C., USA

hazim.shatnawi@gwu.edu

Jamil Saquer

Missouri State University

Springfield, MO, USA

jamilsaquer@missouristate.edu

Abstract— This paper evaluates the performance of Breadth-

First Search (BFS) and Depth-First Search (DFS) algorithms in

Neo4j using the Graph Data Science (GDS) and the Awesome

Procedures on Cypher (APOC) libraries. We benchmark these

algorithms on feature models of varying complexity to assess their

efficiency and scalability. Our findings indicate that GDS

significantly outperforms APOC in terms of traversal times,

particularly for large and complex graphs. This study underscores

the importance of algorithm optimization in graph databases and

provides insights into practical applications and future directions

for improving feature model management in software product

lines.

 Index Terms—Neo4j; graph databases; traversal algorithms in

graph data science; directed acyclic graphs; software product lines;

I) INTRODUCTION

Software Product Lines (SPLs) enable software reuse by

sharing features across related systems to meet market or

mission needs. Feature models (FMs) capture these features and

their dependencies, managing commonality and variability [1].

As SPLs grow, their complexity increases, requiring efficient

management and analysis techniques.

Neo4j, with its native graph storage and querying

capabilities, is ideal for encoding and analyzing FMs [2]. Neo4j's

advanced graph algorithms in the APOC [3] and GDS [4]

libraries enhance performance and scalability for SPL

management.

This paper evaluates Neo4j’s GDS and APOC libraries for

traversing directed acyclic graphs (DAGs), used to represent

FMs in SPLs. We compare the performance of Neo4j's GDS and

APOC libraries in traversing DAGs of varying complexity. DFS

and BFS are two famous algorithms often used to traverse

graphs, which we concentrate on in this article. We utilize FMs

that represent SPLs as a prime example of graph representation

in Neo4j. These models serve as an excellent illustration due to

their ability to scale from small to very large sizes while

encapsulating complex relationships. This characteristic allows

us to effectively demonstrate the capabilities of Neo4j in

handling both the simplicity and intricacy inherent in graphs that

represent FMs and their interconnections.
We represent FMs as DAGs due to their natural fit with

hierarchical and complex dependency structures, ensuring clear

DOI reference number: 10.18293/SEKE2024-110

parent-child relationships without circular dependencies [2].
Following Feature-Oriented Domain Analysis (FODA), using
DAGs simplifies modeling, focusing on hierarchical and
dependency relationships [5]. Representing FMs as DAGs
provides a structured, efficient approach to managing feature
dependencies such as requires and excludes dependencies, with
cycles managed through detection and traversal algorithms,
ensuring integrity and clarity in performance evaluation.

II) NEO4J

We initially used a relational database for FMs but faced

scalability issues [6]. Transitioning to Neo4j improves

performance and scalability for SPLs. Neo4j's nodes, properties,

labels, and relationships efficiently manage data. This encoding

technique optimizes data management, improving performance,

scalability, and complexity [7]. This shift to graph-based

structures optimizes performance and management, advancing

SPL research and applications.

Neo4j’s architecture handles connected data efficiently,

advancing SPL research and applications. Its native graph

storage outperforms relational databases on interconnected data

with many relationships, facilitating automated feature model

creation and product generation [2, 7].

Neo4j includes APOC and GDS libraries for complex data

operations. APOC offers procedures for data transformations

and pathfinding, enhancing graph operations. Integrating APOC

and GDS extends data manipulation abilities, vital for academic

and enterprise use. Our experiments use these libraries to assess

their effectiveness in analyzing SPL feature models in Neo4j.

III) EXPERIMENTAL SETUP AND METHODOLOGY

This section details our methodology for analyzing FMs in
Neo4j using the APOC and GDS libraries. We assess how model
complexity affects BFS and DFS traversal performance. These
algorithms explore the model's structure, evaluating
effectiveness in both APOC and GDS contexts.

Cypher queries are executed via the Neo4j Python driver.
Large datasets are ingested using Cypher commands, with the
Batch Importer Technique and CSV files supporting incremental
loading to minimize memory use. We use a Cypher algorithm
discussed in [2] to ensure that DAGs remain cycle-free.

Our experimental procedure involves nested loops over
database encodings, FMs, and performance tests, calculating

averages and statistics for each test. The parameters are:

• B = the collection of database encodings

• FM = the collection of feature models

• PT = the collection of time-based feature model
performance tests

• N = the number of repetitions of the test runs

The following pseudocode, expressed in terms of the above
parameters, outlines the experimental procedure:

Figure 1. Experimental Procedure

Table 1 lists the number of features, relationships, requires,
excludes, and graph depths for the nine FMs in our experiments.

Table 1. Graphs’ Parameters for Experiments

FM #Feature #Relations Depth #Require #Exclude

1 19 20 4 1 1

2 500 485 12 72 91

3 1000 980 15 169 161

4 2000 2008 16 331 333

5 5000 5200 16 246 504

6 10000 10000 21 683 726

7 18000 13671 20 1140 1604

8 30000 29999 24 1524 1542

9 42000 37212 26 1484 1234

IV) EXPERIMENTAL RESULTS AND DISCUSSION

We compare APOC and GDS performance across graph
sizes, from small to complex. Tables 2-5 show DFS and BFS
results for different FM sizes, where time is in seconds.

Table 2. Experimental Results of using DFS from GDS

Nodes Min Max Mean

20 0.000878 0.027010 0.004065

500 0.105626 0.141981 0.123033

1000 0.226812 0.311963 0.266546

2000 0.222220 0.318001 0.266530

5000 0.743833 0.935618 0.846392

10000 3.540471 3.853090 3.675441

18000 5.699261 6.437443 5.964832

30000 7.589752 11.903438 11.496000

42000 10.783620 15.021226 12.012990

Table 3. Experimental Results of Using BFS from GDS

Nodes Min Max Mean

20 0.000948 0.029171 0.004390

500 0.114076 0.153340 0.132875

1000 0.244957 0.336919 0.287869

2000 0.239598 0.343441 0.287852

5000 0.803340 1.010467 0.914103

10000 3.823709 4.161338 3.969476

18000 6.155201 6.952438 6.442019

30000 8.196932 12.855713 9.040000

42000 11.245310 16.222966 11.880000

Table 4. Experimental Results of using DFS from APOC

#FM Min Max Mean

20 0.000998 0.030011 0.004517

500 0.117362 0.157757 0.136703

1000 0.252013 0.346625 0.296162

2000 0.261435 0.357648 0.308444

5000 0.875098 1.05955 0.955658

10000 3.930412 4.281211 4.079411

18000 6.332512 7.152714 6.627591

30000 10.126215 16.356986 14.513201

42000 19.745435 25.907372 21.290300

Table 5. Experimental Results of using BFS from APOC

#FM Min Max Mean

20 0.000982 0.023704s 0.003481

500 0.119620 0.184382 0.142963

1000 0.281596 0.370896 0.318995

2000 0.256398 0.399774 0.346087

5000 0.984398 1.646392 1.159850

10000 4.051471 6.238928 4.721993

18000 6.351740 10.146643 7.850616

30000 15.568654 17.351475 16.508593

42000 19.920761 31.602018 23.123314

PROCEDURE (DB , FM , PT , N) :
 For each db in DB :
 For each fm in FM :
 Repeat N times :
 For each pt in PT :
 Perform pt , measuring time to complete
 Compute and record statistics for this run which
 includes mean , minimum , maximum for
 each pt

Fig. 2 shows a plot of the running time of DFS in GDS versus
APOC for different FM sizes. Likewise, Fig. 3 shows a plot of
the running time of BFS in GDS versus APOC for different FM
sizes.

Figure 2. GDS versus APOC in Utilizing DFS in our Experiment.

Figure 3. GDS versus APOC in utilizing BFS in our Experiment.

As the results demonstrate, in the case of small graphs, the
traversal times are both minimal and nearly similar, making it
challenging to draw a definitive conclusion. The following
points highlight the key aspects of the comparison:

• Consistency and Scalability. Both APOC and GDS
traversal times increase with the number of nodes, but GDS
consistently outperforms APOC when FMs grow in size and
complexity. For instance, APOC DFS time for 42,000 nodes
is 21.3 seconds compared to 12.0 seconds for GDS.
Similarly, APOC BFS times are 23.1 seconds versus 11.9
seconds for GDS. This demonstrates that while both
systems scale predictably, GDS is more efficient. For
example, it takes around half the time of APOC when

traversing the feature model with 42000 nodes and 37212
relationships.

• Impact of Depth and Constraints. Traversal times
increase with greater depth and more constraints. A model
with a depth of 26 shows slower traversal times. A simpler
model with a depth of 4 and minimal constraints, exhibits
faster traversal times. APOC demonstrates consistent
performance with increasing node counts but generally
slower traversal times than GDS in large and complex FMs.

In summary, while both APOC and GDS handle depth and
constraints effectively, GDS's consistent performance and faster
traversal times make it the more efficient choice for large-scale
and complex models.

V) CONCLUSION

The analysis of DFS and BFS traversal times using GDS and
APOC in Neo4j reveals several key insights. 1) GDS
Superiority: GDS consistently outperforms APOC in traversal
times, particularly in large and complex FMs. This is attributed
to GDS's optimized algorithms, making it the preferred choice
for handling extensive and intricate graph structures. 2)
Scalability and Efficiency: Both GDS and APOC demonstrate
scalability, but GDS offers more efficient management of depth
and constraints, resulting in faster traversal times. This
efficiency is crucial for practical applications where
performance and speed are paramount.

 REFERENCES

[1] K. Czarnecki and U. W. Eisenecker, Generative

programming: methods, tools, and applications, Boston,

MA, USA: Addison-Wesley, 2000.

[2] H. Shatnawi and J. Saquer, "Encoding feature models in

Neo4j graph databas," in 2024 ACM Southeast Conference

(ACMSE 2024), Marietta, GA, USA, 2024.

[3] Neo4j, Inc., "APOC user guide," 2024. [Online].

Available: https://neo4j.com/docs/apoc/current/.

[4] Neo4j, Inc., "Graph data science user guide," 2024.

[Online]. Available: https://neo4j.com/docs/graph-data-

science/current/.

[5] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A.

S. Peterson, "Feature-oriented domain analysis (FODA)

feasibility study," Software Engineering Institute,

Carnegie Mellon University, 1990.

[6] H. Shatnawi and C. Cunningham, "Mapping SPL Feature

Models to a Relational Database," in Proceedings of ACM

SouthEast Conference (ACMSE 2017), Kennesaw, GA,

USA, 2017.

[7] J. A. M. Stothers and A. Nguyen, "Can Neo4j replace

PostgreSQL in healthcare?," AMIA Joint Summits on

Translational Science, vol. 2020, p. 646–653, 2020.

