
   Neo4j’s BFS and DFS Evaluation in GDS and 

APOC Libraries with SPL Feature Models

Hazim Shatnawi 

The George Washington University 
Washington, D.C., USA 

hazim.shatnawi@gwu.edu 

Jamil Saquer 

Missouri State University 

Springfield, MO, USA 

jamilsaquer@missouristate.edu

Abstract— This paper evaluates the performance of Breadth-

First Search (BFS) and Depth-First Search (DFS) algorithms in 

Neo4j using the Graph Data Science (GDS) and the Awesome 

Procedures on Cypher (APOC) libraries. We benchmark these 

algorithms on feature models of varying complexity to assess their 

efficiency and scalability. Our findings indicate that GDS 

significantly outperforms APOC in terms of traversal times, 

particularly for large and complex graphs. This study underscores 

the importance of algorithm optimization in graph databases and 

provides insights into practical applications and future directions 

for improving feature model management in software product 

lines.  

      Index Terms—Neo4j; graph databases; traversal algorithms in 

graph data science; directed acyclic graphs; software product lines;  

I) INTRODUCTION 

Software Product Lines (SPLs) enable software reuse by 

sharing features across related systems to meet market or 

mission needs. Feature models (FMs) capture these features and 

their dependencies, managing commonality and variability [1]. 

As SPLs grow, their complexity increases, requiring efficient 

management and analysis techniques. 

Neo4j, with its native graph storage and querying 

capabilities, is ideal for encoding and analyzing FMs [2]. Neo4j's 

advanced graph algorithms in the APOC [3] and GDS [4] 

libraries enhance performance and scalability for SPL 

management. 

This paper evaluates Neo4j’s GDS and APOC libraries for 

traversing directed acyclic graphs (DAGs), used to represent 

FMs in SPLs. We compare the performance of Neo4j's GDS and 

APOC libraries in traversing DAGs of varying complexity. DFS 

and BFS are two famous algorithms often used to traverse 

graphs, which we concentrate on in this article. We utilize FMs 

that represent SPLs as a prime example of graph representation 

in Neo4j. These models serve as an excellent illustration due to 

their ability to scale from small to very large sizes while 

encapsulating complex relationships. This characteristic allows 

us to effectively demonstrate the capabilities of Neo4j in 

handling both the simplicity and intricacy inherent in graphs that 

represent FMs and their interconnections.  
We represent FMs as DAGs due to their natural fit with 

hierarchical and complex dependency structures, ensuring clear  
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parent-child relationships without circular dependencies [2]. 
Following Feature-Oriented Domain Analysis (FODA), using 
DAGs simplifies modeling, focusing on hierarchical and 
dependency relationships [5]. Representing FMs as DAGs 
provides a structured, efficient approach to managing feature 
dependencies such as requires and excludes dependencies, with 
cycles managed through detection and traversal algorithms, 
ensuring integrity and clarity in performance evaluation.  

II) NEO4J 

We initially used a relational database for FMs but faced 

scalability issues [6]. Transitioning to Neo4j improves 

performance and scalability for SPLs. Neo4j's nodes, properties, 

labels, and relationships efficiently manage data. This encoding 

technique optimizes data management, improving performance, 

scalability, and complexity [7]. This shift to graph-based 

structures optimizes performance and management, advancing 

SPL research and applications.  

Neo4j’s architecture handles connected data efficiently, 

advancing SPL research and applications. Its native graph 

storage outperforms relational databases on interconnected data 

with many relationships, facilitating automated feature model 

creation and product generation [2, 7]. 

Neo4j includes APOC and GDS libraries for complex data 

operations. APOC offers procedures for data transformations 

and pathfinding, enhancing graph operations. Integrating APOC 

and GDS extends data manipulation abilities, vital for academic 

and enterprise use. Our experiments use these libraries to assess 

their effectiveness in analyzing SPL feature models in Neo4j. 

III)  EXPERIMENTAL SETUP AND METHODOLOGY  

This section details our methodology for analyzing FMs in 
Neo4j using the APOC and GDS libraries. We assess how model 
complexity affects BFS and DFS traversal performance. These 
algorithms explore the model's structure, evaluating 
effectiveness in both APOC and GDS contexts.  

Cypher queries are executed via the Neo4j Python driver. 
Large datasets are ingested using Cypher commands, with the 
Batch Importer Technique and CSV files supporting incremental 
loading to minimize memory use. We use a Cypher algorithm 
discussed in [2] to ensure that DAGs remain cycle-free. 

Our experimental procedure involves nested loops over 
database encodings, FMs, and performance tests, calculating 



averages and statistics for each test. The parameters are: 
 

• B = the collection of database encodings 

• FM = the collection of feature models  

• PT = the collection of time-based feature model 
performance tests  

• N = the number of repetitions of the test runs 
 

The following pseudocode, expressed in terms of the above 
parameters, outlines the experimental procedure: 

 
 

Figure 1. Experimental Procedure 

Table 1 lists the number of features, relationships, requires, 
excludes, and graph depths for the nine FMs in our experiments. 

Table 1. Graphs’ Parameters for Experiments 

FM #Feature #Relations Depth #Require #Exclude 

1 19 20 4 1 1 

2 500 485 12 72 91 

3 1000 980 15 169 161 

4 2000 2008 16 331 333 

5 5000 5200 16 246 504 

6 10000 10000   21 683 726 

7 18000 13671 20 1140 1604 

8 30000 29999 24 1524 1542 

9 42000 37212 26 1484 1234 

 

IV) EXPERIMENTAL RESULTS AND DISCUSSION 

We compare APOC and GDS performance across graph 
sizes, from small to complex. Tables 2-5 show DFS and BFS 
results for different FM sizes, where time is in seconds. 

Table 2. Experimental Results of using DFS from GDS 

Nodes Min Max Mean 

20 0.000878 0.027010 0.004065 

500 0.105626 0.141981 0.123033 

1000 0.226812 0.311963 0.266546 

2000 0.222220 0.318001 0.266530 

5000 0.743833 0.935618 0.846392 

10000 3.540471 3.853090 3.675441 

18000 5.699261 6.437443 5.964832 

30000 7.589752 11.903438 11.496000 

42000 10.783620 15.021226 12.012990 

 
Table 3. Experimental Results of Using BFS from GDS 

Nodes Min Max Mean 

20 0.000948 0.029171 0.004390 

500 0.114076 0.153340 0.132875 

1000 0.244957 0.336919 0.287869 

2000 0.239598 0.343441 0.287852 

5000 0.803340 1.010467 0.914103 

10000 3.823709 4.161338 3.969476 

18000 6.155201 6.952438 6.442019 

30000 8.196932 12.855713 9.040000 

42000 11.245310 16.222966 11.880000 

 
Table 4. Experimental Results of using DFS from APOC 

#FM Min Max Mean 

20 0.000998 0.030011 0.004517 

500 0.117362 0.157757 0.136703 

1000 0.252013 0.346625 0.296162 

2000 0.261435 0.357648 0.308444 

5000 0.875098 1.05955 0.955658 

10000 3.930412 4.281211 4.079411 

18000 6.332512 7.152714 6.627591 

30000 10.126215 16.356986 14.513201 

42000 19.745435 25.907372 21.290300 

 
Table 5. Experimental Results of using BFS from APOC 

#FM Min Max Mean 

20 0.000982 0.023704s 0.003481 

500 0.119620 0.184382 0.142963 

1000 0.281596 0.370896 0.318995 

2000 0.256398 0.399774 0.346087 

5000 0.984398 1.646392 1.159850 

10000 4.051471 6.238928 4.721993 

18000 6.351740 10.146643 7.850616 

30000 15.568654  17.351475 16.508593 

42000 19.920761 31.602018 23.123314 

PROCEDURE (DB , FM , PT , N) : 
    For each db in DB : 
        For each fm in FM : 
            Repeat N times : 
                For each pt in PT : 
                    Perform pt , measuring time to complete 
             Compute and record statistics for this run which 
              includes mean , minimum , maximum for                   
              each   pt 



Fig. 2 shows a plot of the running time of DFS in GDS versus 
APOC for different FM sizes. Likewise, Fig. 3 shows a plot of 
the running time of BFS in GDS versus APOC for different FM 
sizes. 

 

Figure 2. GDS versus APOC in Utilizing DFS in our Experiment. 

 

Figure 3. GDS versus APOC in utilizing BFS in our Experiment. 

As the results demonstrate, in the case of small graphs, the 
traversal times are both minimal and nearly similar, making it 
challenging to draw a definitive conclusion. The following 
points highlight the key aspects of the comparison: 

• Consistency and Scalability. Both APOC and GDS 
traversal times increase with the number of nodes, but GDS 
consistently outperforms APOC when FMs grow in size and 
complexity. For instance, APOC DFS time for 42,000 nodes 
is 21.3 seconds compared to 12.0 seconds for GDS. 
Similarly, APOC BFS times are 23.1 seconds versus 11.9 
seconds for GDS. This demonstrates that while both 
systems scale predictably, GDS is more efficient. For 
example, it takes around half the time of APOC when 

traversing the feature model with 42000 nodes and 37212 
relationships. 

• Impact of Depth and Constraints. Traversal times 
increase with greater depth and more constraints. A model 
with a depth of 26 shows slower traversal times. A simpler 
model with a depth of 4 and minimal constraints, exhibits 
faster traversal times. APOC demonstrates consistent 
performance with increasing node counts but generally 
slower traversal times than GDS in large and complex FMs.   

In summary, while both APOC and GDS handle depth and 
constraints effectively, GDS's consistent performance and faster 
traversal times make it the more efficient choice for large-scale 
and complex models.  

V) CONCLUSION  

The analysis of DFS and BFS traversal times using GDS and 
APOC in Neo4j reveals several key insights. 1) GDS 
Superiority: GDS consistently outperforms APOC in traversal 
times, particularly in large and complex FMs. This is attributed 
to GDS's optimized algorithms, making it the preferred choice 
for handling extensive and intricate graph structures. 2) 
Scalability and Efficiency: Both GDS and APOC demonstrate 
scalability, but GDS offers more efficient management of depth 
and constraints, resulting in faster traversal times. This 
efficiency is crucial for practical applications where 
performance and speed are paramount. 
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