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Abstract—With the development of Industry 4.0 (I4.0), the
demand for a protocol to unify communication between different
devices is dramatically increasing. OPC Unified Architecture
(OPC UA) is a protocol that can be used to accomplish informa-
tion interoperability in manufacturing and its usage is expand-
ing. Some research has been conducted on the implementation
approaches for aggregating server pattern OPC UA in vertical
integration. However, few efforts have been made on the formal
verification of OPC UA as a vertical communication protocol to
facilitate manufacture.

In this paper, we design an aircraft parts production use case
where vertical communication between the management layer
and shop floor devices is achieved via OPC UA aggregating
server architecture. Information Model and Services are two
fundamental contents of the OPC UA protocol. With the help
of process algebra Communicating Sequential Processes (CSP),
we build the use case OPC UA model and realize both the
Information Model and Services using a verification tool, Process
Algebra Toolkit (PAT). We verify the general properties of
the system (Divergence Freedom and Deadlock Freedom) and
functional properties of OPC UA (Service Read Success, Service
Call Success, Monitor Variable Success and Monitor Event
Success). The results demonstrate the feasibility of the OPC UA
protocol in vertical communication.

Index Terms—OPC UA; Process Algebra CSP; Aggregating
Server; Vertical Integration; Modeling

I. INTRODUCTION

Developed from Classic Open Platform Communication
(OPC), which is primarily designed for Windows platform,
OPC UA is proposed as a platform-independent standard
providing a connectivity foundation for Internet of Things
(IoT) and I4.0 initiative [1]. OPC UA protocol is well designed
for interoperability to unify vertical and horizontal higher
production levels [2].

Contrary to horizontal integration, a consolidation of many
firms that handle the same part of the production process,
vertical integration is typified by one firm engaged in different
parts of production [3]. Due to increasing demands for more
flexibility [4] and the development of I4.0 in manufacturing
systems, vertical integration of information within the produc-
tion system is necessary. In order to communicate directly
between different layers, for example, Enterprise Resource
Planning (ERP), Manufacturing Execution System (MES) and
shop-floor layer, a common communication standard [5] is
in desperate need. As a communication technology offering

a unified interface for information exchange [4], OPC UA is
appropriate to be this standard.

When using OPC UA in vertical integration, an aggre-
gating server pattern is often used. In book OPC Unified
Architecture [6], Mahnke and his coworkers introduce the
aggregating server concept and give an MES scenario in which
the intermediate server processes production requests from
MES OPC UA client and distributes subtasks to underlying
aggregating servers. The pattern is shown in Fig. 1. To build
a prototype solution for information integration in OPC UA,
Johansson exploits the aggregating pattern and even more, he
presents a chained aggregating server architecture for vertical
integration in industrial information system [7].

Fig. 1: Aggregating Server pattern

Some efforts have been made focusing on formally verifying
the security properties of OPC UA. Puys et al. [8] and Guerra
et al. [9] checked the security properties of OPC UA using
verification tools ProVerif and VeriPal. They found some OPC
UA vulnerabilities and provided countermeasures. However, it
lacks theoretical research on verifying functional properties
of OPC UA. So we use process algebra CSP to build and
verify a formal model that uses OPC UA information exchange
Services to complete a production process.

In this paper, we make the following contributions:

• We design an aircraft parts production use case with
aggregating server architecture which uses OPC UA
protocol to complete a production process.



• We formalize a model of the use case using CSP, and
realize the use case OPC UA Information Model and
Services.

• We verify the properties of the system using PAT and the
results certify the feasibility of the use case.

The rest of the paper is organized as follows. Section II
introduces fundamental features of OPC UA and CSP. Sec-
tion III presents an aircraft production use case which deploys
OPC UA to integrate information from shop-floor layer to
MES and implemented with aggregating server architecture.
In Section IV, we give a formalized model of the use case.
We present the verification results of our model in Section V.
In the last section, Section VI, we make a conclusion and
discuss the future possibilities of our work.

II. BACKGROUND

A. OPC UA
In this part, we will give a brief introduction on the two

essential parts of OPC UA: Information Model and Service.
In OPC UA, Information Model formulates data formats in
a domain, while Services allow the exchange of all kinds of
information between different devices.

1) Information Model: Information Model is used for se-
mantically describing the exchanged data in OPC UA, design-
ers of which value the interoperability between systems from
different vendors as the most important requirement. An OPC
UA Information Model defines a standardized configuration
of Nodes and References for its Servers [10]. The information
exposed by an OPC UA Server is called AddressSpace which
consists of Nodes connected by References [11]. OPC foun-
dation has defined eight special types of Base Node Classes,
including ObjectType, Object, Variable, Method, etc. Those
eight node class types constitute an OPC UA Base Information
Model [12]. Together with some built-in functionalities like
DA (Data Access), HA (Historical Access) and so on, a
standardized Information Model is outlined.

Based on the above base and standardized Information
Model, OPC UA allows users to define their own Information
Models [10]. Thus we design an Information Model in our
aircraft parts production use case and the detail will be
presented in Section III and Section IV.

TABLE I: Services grouped by use case

Use case Service sets or services
Find servers Discovery Services Set
Connection management between
clients and servers

Secure Channel Services Set
Session Service Set

Find information in the Address
Space View Service Set

Read and write data and metadata Read and Write Service
Subscribe for data changes and
Events

Subscription Service Set
Monitored Item Service Set

Calling Methods defined by the
server Call Service

Access history of data and Events HistoryRead and HistoryUpdate
Service

Find information in a complex
Address Space Query Service Set

Modify the structure of the server
Address Space Node Management Service Set

2) Service: Services are methods used by an OPC UA client
to access the data of the Information Model provided by an
OPC UA server [6]. We reference a table from the book OPC
Unified Architecture [6] to illustrate services provided by OPC
UA in Table I.

Discovery, Secure Channel and Session are Service sets
used in the communication establishment phase. The other
Service Sets are related to the exchange of information. In this
paper, we will focus on information exchange related Services:

• TranslateBrowsePathsToNodeIds Service
This is a fundamental service which enables clients to
access components of an Object based on knowledge of
the Object NodeId and built-in ObjectType. This service
works on the premise that BrowseNames are the same
for Object components and corresponding ObjectType.

• Read and Call Services
Read Service is an important feature of OPC UA, allow-
ing clients to access Variable with NodeId of the Variable.
Similarly, Call Service provides a way for clients to call
Method of Object in the server’s Address Space.

• Subscription and Monitored Items Services
Clients subscribe data changes and events from server
through Subscription and Monitored Items Services.
When a client requests a server with CreateSubscription
Service, a SubscriptionId is returned. Then the client
could use the SubscriptionId in CreateMonitoredItems
Service.

It should be noted that the other services must first utilize
TranslateBrowsePathsToNodeIds Service to get NodeId for
the following usage.

B. CSP
Process Algebra is an algebraic approach for analysing

concurrent processes. CSP is a process algebra proposed by
C. A. R. Hoare in 1978 [13]. Since then, it has been improved
and refined. The syntax of CSP is specified below:

P,Q :: = SKIP | a → P | c!v → P | c?v → P | P ;Q |
P ||Q | P2Q | P �B �Q | P [[T ]]Q

• SKIP represents the natural exit of the process when
there is no event left to execute.

• a → P represents after action a, process P will be
executed.

• c!v → P outputs a value v through channel c and then
execute process P .

• c?x → P receives a value stored in variable x through
channel c and then execute process P .

• P ;Q executes process P and Q sequentially.
• P∥Q forms a process in which process P and Q are

executed in parallel.
• P2Q stands for a process formed by a general choice

between process P and process Q and the environment
can control which process will be selected.

• P ◁ B ▷ Q is a conditional statement. When condition
B is true, execute process P . Otherwise, execute process
Q.



• P [[T ]]Q means process P and Q concurrent actions in
channels of set T .

III. USE CASE: AIRCRAFT PARTS PRODUCTION

In the production field, especially the vehicle and aircraft
production field where there are a great number of distinct
complex devices, OPC UA could be used to provide the
groundwork for IoT by breaking down the communication
barriers between objects, allowing programs to exchange all
the relevant information throughout a manufacturing organi-
zation [14].

We pick up a classical scene in an aircraft factory where
a group of Devices managed by a Workshop is producing
aircraft parts under the command of the MES layer. In the
process of aircraft parts production, OPC UA is used as a
unified protocol to represent data and exchange messages
among different layers.

Fig. 2: Aircraft part production flow

The production flow involving a device Devicei is shown
in Fig 2. The whole production flow can be divided into three
phases.

Phase 1: Startup
In this phase, the production preparation work is done.

First, a subscription is built up between MES and Work-
shop and MES gets a unique SubscriptionId for subsequent
requests. In step 2, MES uses Call Services to set materials,
employees and target part numbers to produce in Workshop.
In step 3, MES uses the SubscriptionId to subscribe an event
finish production from Workshop. Then in step 4, Work-
shop invokes Read Service to get Devicei’s variable status.
In step 5, Workshop uses Call Service to start Devicei. The

subscription between Workshop and the ith Device is invoked
in step 6. In step 7 and step 8, monitored items are subscribed.
Workshop subscribes event finish a production and variables
ConsumedMaterial and ManTime.
Phase 2: Device Working

In this phase, Devicei cooperates with other devices to
produce the required number of parts which is set in step 2.
Workshop maintains a ProducedNumber variable. Each time a
part is produced, Devicei publishes finish a production to no-
tify Workshop and Workshop will increase ProducedNumber
by one. When the required number is reached, our production
moves into the next phase.
Phase 3: Wrap-Up

In this stage, resources are released and reset. When reaches
the production target, Workshop invokes DeleteMonitoredItem
Service, DeleteSubscription Service and uses Call Service to
stop Devicei. Then, Workshop publishes finish production
notification to MES. After that, MES deletes monitored items
and subscriptions to Workshop.

IV. MODELING

A. Information Model

We define three ObjectTypes: ResourceType, ProductType
and DeviceType to provide type definitions of Objects shown
in Fig. 3. These ObjectType knowledge is universally pro-
grammed in both OPC UA clients and servers.

Besides, there are three Object nodes: Resource, Product
and Device, each representing an entity in the server Infor-
mation Model structuring variables and methods. Resource
and Product are nodes in the Workshop Server Information
Model representing storage information. While Device Object
in Device layer Server Information Model would describe the
Device status and provide methods.

Fig. 3: Use Case Information Model

B. Sets and Channels

First, we give the definition of the sets.
• Node involves nodes we defined in address space.

Node =df {ResourceType, ProductType,

DeviceType,Resource, Product,Device}

• Constant contains constants that are set to initiate Node
variables. Specifically, D is an important constant which
specifies the number of Devices in the use case. D



will be mentioned quite a lot in the following modeling
processes.

• SubscriptionId defines Ids of the subscription between
MES and Workshop, between Workshop and Devices.

SubscriptionId =df {MSSubId, SESubId[1..D]}

• MonitoredItemId defines Ids for monitored items as-
signed by Workshop server or Device server.

MonitoredItemId =df

{ReachTarMEId,ReachAProMEId,

ConMatMV Id,WorNumMV Id}

• NodeId is the set of NodeId for ObjectType, Object,
Variables and Methods in our use case address space.

NodeId =df

{resourceNodeId, productNodeId,

DeviceNodeId[1..D], resourceTypeNodeId,

productTypeNodeId,DeviceTypeNodeId}

• Function contains functions of nodes for accessing vari-
ables and invoking methods.

Next, we give the definition of the channels.
The channel Time is used to tell the time for synchroniz-

ing devices’ working processes. Other channels are Service-
oriented. As shown in Fig 4, we define two groups of channels.
ComMS fomalizes channels between MES and Workshop and
ComSEi fomalizes channels between Workshop and Devicei.

Fig. 4: Aircraft part production flow

Each group contains following channels for each Service:
• Com TransNodeId set are channels used in Translate-

BrowsePathstoNodeIds Service. It includes:
ComMSTN, ComSETN[i]

• Com Sub set contains channels used to create and delete
subscriptions. Including:

CreMSSub, DelMSSub, CreSESub[i], DelSESub[i]
• Com MV set are channels used to monitor variables

which includes:
CreMSMV, ComMSMV, DelMSMV,

CreSEMVWorker[i], CreSEMVMaterial[i],

ComSEMVWorker[i], ComSEMVMaterial[i],
DelSEMVWorker[i], DelSEMVMaterial[i]

• Com ME set are channels used to create and delete
monitored events. Including:

CreMSME, ComMSME, DelMSME,
CreSEME[i], ComSEME[i], DelSEME[i]

• Com Call set are channels used to implement call method
Service. Including:

ComMSCall, ComSECall[i]
• Com Read set are channels used to implement OPC UA

read Service. Including:
ComMSRead, ComSERead[i]

C. Overall modeling
The aircraft part use case focuses on the vertical commu-

nication from MES to Workshop, down to Devices. Corre-
spondingly, our model consists of three major processes: MES,
Workshop and Device.

System =df

Init; (MES ∥ Workshop ∥ Device ∥ Clock(0))

Init mainly deals with the initialization of Nodes. After
the sequential running of Init process, Nodes in our use case
Information Model are defined and the ith Device’s NodeIds
(including its components) and values are generated randomly.

D. Clock Modeling
In our model, we adopt a design of time from [15] to record

the passage of time. Clock in our model is used to synchronize
different Device production processes and to calculate produc-
tion man-hours for measuring individual production progress.

Clock(t) =df

tick → Clock(t+ 1) 2 T ime!t → Clock(t)

E. MES Modeling
MES mainly acts as an OPC UA client. In MESCreSub,

the client of MES initiates the process with CreateSubscription
Service to subscribe Workshop server and get a SubscriptionId
in return. MESController is composed of some Call Services
requested by the MES client from the Workshop server.

MES =df

MESCreSub;MESController ;MESMonitorEvent ;

In MESController process, we first use ComMSTN chan-
nel to request TranslateBrowsePathsToNodeIds Service to get
Method’s NodeId which will be used for Call Service through
ComMSCall channel. And the service will be verified in
Section V.

MESController(nodeId, browseName, arg) =df

ComMSTN !nodeId.browseName →
ComMSTN?id →
ComMSCall!id.arg → SKIP ;

We formalize MESMonitorEvent process to represent Mon-
itor Event Service in MES client. The action finish production
represents the monitored event triggered by Workshop Server
to inform MES that the production is finished.

MESMonitorEvent =df

CreMSME!MSSubId.productNodeId.REQMSME →



CreMSME?monitorId → finish production →
DelMSME!MSSubId.ReachTarMEId.DEL MSME →
DelMSME?rep →
(fail ◁ (rep == Del Fail) ▷ MESDelSub)

F. Workshop Modeling

The whole Workshop process consists of two parts: client
and server. The Workshop server would provide Services to
reply to MES client’s requests.

Workshop =df WorkshopService;WorkshopClient

Workshop server provides with many services, so we only
show part of the process.

WorkshopService(part.) =df

ComMSTN?nodeId.bn →

ComMSTN !Resource.GetNodeId(bn) →
WorkshopService

◁ (nodeId == resourceNodeId) ▷
ComMSTN !product.GetNodeId(bn) →
WorkshopService

◁ (nodeId == productNodeId) ▷

fail → WorkshopService




2 CreMSME?subId.nodeId →

CreMSME!ReachTarMEId →
start product →
finish production →
reset Workshop production →
DelMSME?subId.monitorId.req →
reset MSMornitorId →
DelMSME!Del Suc → SKIP

◁

(
req == DELMSME ∧
monitorId == ReachTarMEId

)
▷

DelMSME!Del Fail → SKIP


The first part formalizes TranslateBrowsePathstoNodeIds

Service. The Workshop server judges if the received NodeId
corresponds to the product instance NodeId or the resource
one. The second part shows how Workshop deals with the
MES’s monitor event request. When Workshop receives the
SubscriptionId, it returns a MonitoredItemId and begins to use
start product action to activate the aggregating Devices.

After the Workshop client and server concurrently run
the event start product, the client continues the exchange of
information with underlying Devices.

WorkshopClient =df

start product →
WorkshopReadFreeReq(1);

WorkshopStartDevice;

TurnDeviceTick(1);

(2 x : {1..D}@WorkshopWorkingWithADevice(x));

WorkshopReadFreeReq(o) =df



ComSETN [o− 1]!DeviceNodeId[o− 1].

DeviceType.GetFreeBN() →
ComSETN [o− 1]?nodeId →
ComSERead[o− 1]!nodeId →
ComSERead[o− 1]?free → SKIP ;

WorkshopReadFreeReq(o+ 1);

◁ (o ≤ D) ▷

finish read → SKIP ;


G. Device Modeling

In FullADeviceService each Device acts as a server to
provide OPC UA services for Workshop client. Also, in
ADeviceRunning they synchronize with Clock to get time for
calculating if their production has reached the expected time
under its employee number.

Device =df

(2x : {1..D}@FullADeviceService(x))

∥ (∥x : {1..D}@ADeviceRunning(x))

V. VERIFICATION AND RESULTS

We simulate our model in model checker PAT, using which
we analyzed two general system properties and four functional
properties specifically in OPC UA to evaluate the feasibility
of the protocol in vertical communication.
Property 1: Deadlock Freedom

We verify the absence of deadlock in our model to avoid
the situation when no action could be taken even though some
processes are capable of further action [16]. We examined our
model deadlock freedom in PAT as follows.

#assert System deadlockfree;

Property 2: Divergence Freedom
Divergence Freedom is a basic property for the system to

ensure that it won’t be trapped in an infinite loop consuming
resources and never end. We check the divergence freedom of
our model with the primitive in PAT.

#assert System divergencefree;

Property 3: Service Read Success
We use Linear Temporal Logic (LTL) assertions in PAT

to verify whether the Workshop could get the Device number
value through OPC UA Service read. The ⋄ operator means the
Service Read Success formula could be achieved eventually.

#define Service Read Success

after read freeDevice == D;

#assert System |= ⋄ Service Read Success;

Property 4: Service Call Success
There are four object methods in our model: AddMaterial

and AddEmployee in Resource Object, method Produce in
Product, method Start and End in Device Object. Similarly, we
use a LTL assertion to verify these Service calls are performed
successfully.

#define Service Call Success

after call addmaterial == MESAssignMaterial

&& after call addemployee == MESAssignEmployee

&& after call produce == MESProduce

call start end success;



#assert System |= ⋄ Service Call Success;

Property 5: Monitor Variable Success
Workshop would monitor two variables in Devices: Con-

sumedMaterial and WorkerNumber. To show that the monitor
variable Service works well in vertical communication with
aggregating server architecture, we examine whether sum of
the resource number in Devices and in Workshop would
always equal to the corresponding initial system parameter
in any state of the system.

#define Monitor V ariable Success

MESAssginEmployee ==

Device all workernum+ resource avbemployee

&&MESAssginMaterial ==

Device all consmaterial + resource avbmaterial;

#assert System |= 2 Monitor V ariable Success;

Property 6: Monitor Event Success
Monitor event is also a monitor Service based on subscrip-

tion. The occurrence of finish production means the required
number of productions has been produced and Workshop
Server notifies MES Client through their subscription.

#assert System |= ⋄ finish production;

Verification Results
The verification results of our model are shown in

Fig. 5. divergencefree and deadlockfree means the sys-
tem won’t be stuck or endlessly loops. Validity of Ser-
vice Read Success and Service Call Success imply Read Ser-
vice and Call Service of OPC UA protocol are applica-
ble in vertical communication through different layers in
manufacturing. Correctness of Monitor Variable Success and
Monitor Event Success mean Monitored Item Service and
its prerequisite Subscription Service are reliable in massive
applications between varied instruments.

Fig. 5: Verification Results

These verification results show our model is reliable and
OPC UA protocol can satisfy production use case through its
unified Information Model and series of Service sets.

VI. CONCLUSION AND FUTURE WORK

In this paper, we applied the OPC UA protocol in an aircraft
production use case using aggregating server architecture.
We modeled the system with process algebra CSP to verify
the practicability of OPC UA in vertical communication. We
designed the Information Model for each layer and realized
OPC UA Services in our model to finish the production

process. We verified general system properties and functional
properties related to OPC UA: Deadlock Freedom, Divergence
Freedom, Service Read and Call Success, Monitor Variable
Success and Monitor Event Success. The validity of these
properties shows that OPC UA’s potential in the industry
communication field is far beyond expectations.

In the future, we hope to explore applications of OPC UA in
other impactful scenarios and contribute to formally proving
the usability of OPC UA as a standardized communication
protocol in industry.
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