@inproceedings{felice-etal-2022-constructing,
title = "Constructing Open Cloze Tests Using Generation and Discrimination Capabilities of Transformers",
author = "Felice, Mariano and
Taslimipoor, Shiva and
Buttery, Paula",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-acl.100/",
doi = "10.18653/v1/2022.findings-acl.100",
pages = "1263--1273",
abstract = "This paper presents the first multi-objective transformer model for generating open cloze tests that exploits generation and discrimination capabilities to improve performance. Our model is further enhanced by tweaking its loss function and applying a post-processing re-ranking algorithm that improves overall test structure. Experiments using automatic and human evaluation show that our approach can achieve up to 82{\%} accuracy according to experts, outperforming previous work and baselines. We also release a collection of high-quality open cloze tests along with sample system output and human annotations that can serve as a future benchmark."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="felice-etal-2022-constructing">
<titleInfo>
<title>Constructing Open Cloze Tests Using Generation and Discrimination Capabilities of Transformers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mariano</namePart>
<namePart type="family">Felice</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiva</namePart>
<namePart type="family">Taslimipoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paula</namePart>
<namePart type="family">Buttery</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the first multi-objective transformer model for generating open cloze tests that exploits generation and discrimination capabilities to improve performance. Our model is further enhanced by tweaking its loss function and applying a post-processing re-ranking algorithm that improves overall test structure. Experiments using automatic and human evaluation show that our approach can achieve up to 82% accuracy according to experts, outperforming previous work and baselines. We also release a collection of high-quality open cloze tests along with sample system output and human annotations that can serve as a future benchmark.</abstract>
<identifier type="citekey">felice-etal-2022-constructing</identifier>
<identifier type="doi">10.18653/v1/2022.findings-acl.100</identifier>
<location>
<url>https://aclanthology.org/2022.findings-acl.100/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>1263</start>
<end>1273</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Constructing Open Cloze Tests Using Generation and Discrimination Capabilities of Transformers
%A Felice, Mariano
%A Taslimipoor, Shiva
%A Buttery, Paula
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Findings of the Association for Computational Linguistics: ACL 2022
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F felice-etal-2022-constructing
%X This paper presents the first multi-objective transformer model for generating open cloze tests that exploits generation and discrimination capabilities to improve performance. Our model is further enhanced by tweaking its loss function and applying a post-processing re-ranking algorithm that improves overall test structure. Experiments using automatic and human evaluation show that our approach can achieve up to 82% accuracy according to experts, outperforming previous work and baselines. We also release a collection of high-quality open cloze tests along with sample system output and human annotations that can serve as a future benchmark.
%R 10.18653/v1/2022.findings-acl.100
%U https://aclanthology.org/2022.findings-acl.100/
%U https://doi.org/10.18653/v1/2022.findings-acl.100
%P 1263-1273
Markdown (Informal)
[Constructing Open Cloze Tests Using Generation and Discrimination Capabilities of Transformers](https://aclanthology.org/2022.findings-acl.100/) (Felice et al., Findings 2022)
- Constructing Open Cloze Tests Using Generation and Discrimination Capabilities of Transformers (Felice et al., Findings 2022)
ACL
- Mariano Felice, Shiva Taslimipoor, and Paula Buttery. 2022. Constructing Open Cloze Tests Using Generation and Discrimination Capabilities of Transformers. In Findings of the Association for Computational Linguistics: ACL 2022, pages 1263–1273, Dublin, Ireland. Association for Computational Linguistics.