@inproceedings{bhat-etal-2017-joining,
title = "Joining Hands: Exploiting Monolingual Treebanks for Parsing of Code-mixing Data",
author = "Bhat, Irshad and
Bhat, Riyaz A. and
Shrivastava, Manish and
Sharma, Dipti",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2052",
pages = "324--330",
abstract = "In this paper, we propose efficient and less resource-intensive strategies for parsing of code-mixed data. These strategies are not constrained by in-domain annotations, rather they leverage pre-existing monolingual annotated resources for training. We show that these methods can produce significantly better results as compared to an informed baseline. Due to lack of an evaluation set for code-mixed structures, we also present a data set of 450 Hindi and English code-mixed tweets of Hindi multilingual speakers for evaluation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhat-etal-2017-joining">
<titleInfo>
<title>Joining Hands: Exploiting Monolingual Treebanks for Parsing of Code-mixing Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Irshad</namePart>
<namePart type="family">Bhat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Riyaz</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Bhat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manish</namePart>
<namePart type="family">Shrivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dipti</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose efficient and less resource-intensive strategies for parsing of code-mixed data. These strategies are not constrained by in-domain annotations, rather they leverage pre-existing monolingual annotated resources for training. We show that these methods can produce significantly better results as compared to an informed baseline. Due to lack of an evaluation set for code-mixed structures, we also present a data set of 450 Hindi and English code-mixed tweets of Hindi multilingual speakers for evaluation.</abstract>
<identifier type="citekey">bhat-etal-2017-joining</identifier>
<location>
<url>https://aclanthology.org/E17-2052</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>324</start>
<end>330</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joining Hands: Exploiting Monolingual Treebanks for Parsing of Code-mixing Data
%A Bhat, Irshad
%A Bhat, Riyaz A.
%A Shrivastava, Manish
%A Sharma, Dipti
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F bhat-etal-2017-joining
%X In this paper, we propose efficient and less resource-intensive strategies for parsing of code-mixed data. These strategies are not constrained by in-domain annotations, rather they leverage pre-existing monolingual annotated resources for training. We show that these methods can produce significantly better results as compared to an informed baseline. Due to lack of an evaluation set for code-mixed structures, we also present a data set of 450 Hindi and English code-mixed tweets of Hindi multilingual speakers for evaluation.
%U https://aclanthology.org/E17-2052
%P 324-330
Markdown (Informal)
[Joining Hands: Exploiting Monolingual Treebanks for Parsing of Code-mixing Data](https://aclanthology.org/E17-2052) (Bhat et al., EACL 2017)
ACL