Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Embedding Syntax and Semantics of Prepositions via Tensor Decomposition

Hongyu Gong, Suma Bhat, Pramod Viswanath


Abstract
Prepositions are among the most frequent words in English and play complex roles in the syntax and semantics of sentences. Not surprisingly, they pose well-known difficulties in automatic processing of sentences (prepositional attachment ambiguities and idiosyncratic uses in phrases). Existing methods on preposition representation treat prepositions no different from content words (e.g., word2vec and GloVe). In addition, recent studies aiming at solving prepositional attachment and preposition selection problems depend heavily on external linguistic resources and use dataset-specific word representations. In this paper we use word-triple counts (one of the triples being a preposition) to capture a preposition’s interaction with its attachment and complement. We then derive preposition embeddings via tensor decomposition on a large unlabeled corpus. We reveal a new geometry involving Hadamard products and empirically demonstrate its utility in paraphrasing phrasal verbs. Furthermore, our preposition embeddings are used as simple features in two challenging downstream tasks: preposition selection and prepositional attachment disambiguation. We achieve results comparable to or better than the state-of-the-art on multiple standardized datasets.
Anthology ID:
N18-1082
Volume:
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
Month:
June
Year:
2018
Address:
New Orleans, Louisiana
Editors:
Marilyn Walker, Heng Ji, Amanda Stent
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
896–906
Language:
URL:
https://aclanthology.org/N18-1082
DOI:
10.18653/v1/N18-1082
Bibkey:
Cite (ACL):
Hongyu Gong, Suma Bhat, and Pramod Viswanath. 2018. Embedding Syntax and Semantics of Prepositions via Tensor Decomposition. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 896–906, New Orleans, Louisiana. Association for Computational Linguistics.
Cite (Informal):
Embedding Syntax and Semantics of Prepositions via Tensor Decomposition (Gong et al., NAACL 2018)
Copy Citation:
PDF:
https://aclanthology.org/N18-1082.pdf