@inproceedings{liu-etal-2019-open,
title = "Open Domain Event Extraction Using Neural Latent Variable Models",
author = "Liu, Xiao and
Huang, Heyan and
Zhang, Yue",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1276/",
doi = "10.18653/v1/P19-1276",
pages = "2860--2871",
abstract = "We consider open domain event extraction, the task of extracting unconstraint types of events from news clusters. A novel latent variable neural model is constructed, which is scalable to very large corpus. A dataset is collected and manually annotated, with task-specific evaluation metrics being designed. Results show that the proposed unsupervised model gives better performance compared to the state-of-the-art method for event schema induction."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2019-open">
<titleInfo>
<title>Open Domain Event Extraction Using Neural Latent Variable Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heyan</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We consider open domain event extraction, the task of extracting unconstraint types of events from news clusters. A novel latent variable neural model is constructed, which is scalable to very large corpus. A dataset is collected and manually annotated, with task-specific evaluation metrics being designed. Results show that the proposed unsupervised model gives better performance compared to the state-of-the-art method for event schema induction.</abstract>
<identifier type="citekey">liu-etal-2019-open</identifier>
<identifier type="doi">10.18653/v1/P19-1276</identifier>
<location>
<url>https://aclanthology.org/P19-1276/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>2860</start>
<end>2871</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Open Domain Event Extraction Using Neural Latent Variable Models
%A Liu, Xiao
%A Huang, Heyan
%A Zhang, Yue
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F liu-etal-2019-open
%X We consider open domain event extraction, the task of extracting unconstraint types of events from news clusters. A novel latent variable neural model is constructed, which is scalable to very large corpus. A dataset is collected and manually annotated, with task-specific evaluation metrics being designed. Results show that the proposed unsupervised model gives better performance compared to the state-of-the-art method for event schema induction.
%R 10.18653/v1/P19-1276
%U https://aclanthology.org/P19-1276/
%U https://doi.org/10.18653/v1/P19-1276
%P 2860-2871
Markdown (Informal)
[Open Domain Event Extraction Using Neural Latent Variable Models](https://aclanthology.org/P19-1276/) (Liu et al., ACL 2019)
- Open Domain Event Extraction Using Neural Latent Variable Models (Liu et al., ACL 2019)
ACL
- Xiao Liu, Heyan Huang, and Yue Zhang. 2019. Open Domain Event Extraction Using Neural Latent Variable Models. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2860–2871, Florence, Italy. Association for Computational Linguistics.