Flow computations on imprecise terrains
DOI:
https://doi.org/10.20382/jocg.v4i1a3Abstract
We study water flow computation on imprecise terrains. We consider two approaches to modeling flow on a terrain: one where water flows across the surface of a polyhedral terrain in the direction of steepest descent, and one where water only flows along the edges of a predefined graph, for example a grid or a triangulation. In both cases each vertex has an imprecise elevation, given by an interval of possible values, while its (x,y)-coordinates are fixed. For the first model, we show that the problem of deciding whether one vertex may be contained in the watershed of another is NP-hard. In contrast, for the second model we give a simple O(nlog n) time algorithm to compute the minimal and the maximal watershed of a vertex, or a set of vertices, where n is the number of edges of the graph. On a grid model, we can compute the same in O(n) time.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).