Una Implementación para el Agrupamiento Difuso en SQL
Resumen
Resumen
Los sistemas de gestión de bases de datos (SGBD) relacionales tienen una gran utilidad en el almacenamiento eficiente de grandes volúmenes de datos. En este sentido, se han propuesto algunas extensiones de los SGBD basadas en la lógica difusa, para mejorar la expresividad de los lenguajes de consulta, entre ellos, el lenguaje SQLf (extensión de SQL que soporta condiciones difusas). Por otra parte, el Group-By es un operador de base de datos ampliamente utilizado en el análisis de datos y en los sistemas de apoyo a la toma de decisiones. En muchos casos, parece útil agrupar los valores según su similitud con un determinado concepto, en lugar de establecer la agrupación sobre la base de valores iguales. En este contexto, se ha propuesto una nueva estructura de SQLf denominada Fuzzy Group By (FGB), para apoyar una agrupación basada en particiones difusas. En este trabajo, se incorporó la agrupación difusa en PostgreSQLf, que es una extensión del SGBD PostgreSQL, para el manejo de consultas difusas utilizando el lenguaje SQLf con una arquitectura fuertemente acoplada (directamente en el SGBD). Se propone un algoritmo basado en un hash para evaluar el operador FGB y también se evalúa empíricamente el rendimiento de PostgreSQLf sobre el Benchmark™ TPC-H.
Abstract
Relational DataBase management systems (DBMS) have a great utility in the efficient storage of large data volumes. Also, some DBMS extensions based on fuzzy logic have been proposed to improve the expressiveness of query languages. Among which SQLf is an extension of SQL that supports fuzzy conditions. Separately, the Group-By is a database operator widely used in data analysis and decision support systems. In many cases, it seems useful to group values according to their similarity to a certain concept rather than establishing grouping on the basis of equal values. In this context, a new SQLf structure called Fuzzy Group By (FGB) has been proposed to support a grouping based on fuzzy partitions. In this work, we incorporated the fuzzy grouping in PostgreSQLf, which is an extension of the PostgreSQL DBMS for the handling of fuzzy queries using the SQLf language on the basis of a tight coupled architecture, i.e., directly into the DBMS. We have proposed an algorithm based on a hash to evaluate the FGB operator and also empirically assessed the performance of PostgreSQLf over the TPC Benchmark™ -H (TPC-H).
https://doi.org/10.22209/rt.v44n1a05
Descargas
Citas
Bosc P. y Pivert O.: “SQLf: a relational database language for fuzzy querying”. IEEE Transactions on Fuzzy Systems, 3(1), (1995)1-17. https://doi.org/10.1109/91.366566.
Bosc P. y Pivert O.: “SQLf Query Functionality on Top of a Regular Relational Database Management System”. Studies in Fuzziness and Soft Computing, (2000), 171-190.
George R., Petry F. E., Buckles B. P. and Srikanth R.: “Fuzzy database systems—challenges and opportunities of a new era”. Int J of Intelligent Systems, Vol. 11, No. 9, (1996), 649-659.
Pivert O.: “Contribution à l'interrogation flexible de bases de données: expression et évaluation de requêtes floues”. (1991). Doctoral dissertation, Université de Rennes 1.
Galindo J., Urrutia A. and Piattini M.: “Representation of Fuzzy Knowledge in Relational Databases”. Fuzzy Databases: Modeling, Design and Implementation, (2006), 145-170.
Goncalves M. and Tineo L.: “SQLf3: an extension of SQLf with SQL3 features”. In Proceedings of 10th IEEE International Conference on Fuzzy Systems, (2001), 477-480.
Sanchez, H.R., Sarango, D.E. and Cucuri, M.I.: “Evaluación de un sistema de alimentación avícola basado en lógica difusa”. Revista Técnica de Ingeniería Universidad del Zulia, Vol. Especial, No. 1, (2020), 3-10.
Bosc P. and Pivert O.: “On a fuzzy group-by clause in SQLf”. International Conference on Fuzzy Systems, (2010), 1-6.
Aguilera A., Cadenas J.T. and Tineo L.: “Fuzzy Querying Capability at Core of a RDBMS”. In Advances in Data Mining and Database Management, IGI Global. Hershey, 2011, 160-184.
Bosc P. and Galibourg M.: “Indexing principles for a fuzzy database”. J. Information Systems, Vol. 14, No. 6, (1989), 493-499.
Pivert O. and Bosc P.: “Fuzzy Group By”. In: Fuzzy preference queries to relational databases. World Scientific, (2012), 251–265.
Timarán R.: “Arquitecturas de Integración del Proceso de Descubrimiento de Conocimiento con Sistemas de Gestión de Bases de Datos: un Estado del Arte, Ingeniería y Competitividad”, Vol. 3, No. 2, (2001), 45-55.
Smits G., Pivert O. and Girault T.: “ReqFlex: fuzzy queries for everyone”. Proc. VLDB Endow., Vol. 6, No. 12, (2013), 1206-1209.
Aguilera A., Cadenas J. and Tineo L.: “Rendimiento de Consultas SQLf en arquitecturas débil y fuertemente acopladas”. Revista Multiciencias, Latindex Venezuela, Vol. 11, No 4, (2011), 410-415.
Cadenas. J.: “Una contribución a la interrogación flexible de bases de datos: Optimización y evaluación a nivel físico”, Master Thesis, USB, Caracas, Venezuela, (2006).
Rosenfeld A.: “Fuzzy groups”. Journal of mathematical analysis and applications, Vol. 35, No. 3, (1971), 512-517.
Zhang C. and Huang Y.: “Cluster By: a new sql extension for spatial data aggregation”. In Proceedings of the 15th annual ACM International Symposium on Advances in Geographic Information Systems, (2007), 1-4.
Li C., Wang M., Lim L., Wang H. and Chang K. C.: “Supporting ranking and clustering as generalized order-by and group-by”. In Proceedings of the ACM SIGMOD International Conference on Management of data, (2007), 127-138.
Silva Y. N., Aref W. G. and Ali M. H.: “Similarity group-by”. In Proceeding of 2009 IEEE 25th International Conference on Data Engineering, (2009), 904-915.
Laverde N. A., Cazzolato M. T., Traina A. J. and Traina C.: “Semantic Similarity Group By Operators for Metric Data”. In Similarity Search and Applications (SISAP), Vol. 10609, (2017), 247-261.
Henderson P.A., Seaby R.M.H. and Somes J.R.: “Fuzzy Grouping”. Pisces Conservation Ltd., Lymington, Hampshire, UK., Vol. 2, (2014).
Pudło F. and Ząbkowski T.: “Information Quality improvement methods in Management Information Systems”. Information Systems in Management II, Wyd. SGGW, (2008), 124-133.
Zhang J., Guyer C., Milener G. and Petersen T.: “Fuzzy Grouping Transformation”. https://docs.microsoft.com/en-us/sql/integration-services/data-flow/transformations/fuzzy-grouping-transformation?view=sql-server-2017, (2017).
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0