Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Analytical Solution for Nnonlinear Vibration of Micro-electromechanical System (MEMS) by Frequency-amplitude Formulation Method


Authors

M. Mashinchi Joubari - Department of Mechanical Engineering, Babol University of Technology, Babol, Iran R. Asghari - Applied Mathematics Department, Mathematics Science Faculty, Guilan University, Rasht, Iran


Abstract

In this paper, one analytical technique named Frequency-Amplitude Formulation Method (FAF) isused to obtain the behavior and frequency of theelectrostatically actuated microbeams. The main aim of the work is obtaining highly accurate analytical solution for nonlinear free vibration of a microbeam and investigates the dynamic behavior of the system. Results reveal that the nonlinear frequency of oscillatory system remarkably affected with the initial conditions. In contrast to the time marching solution results, the present analytical method is effective and convenient. It is predictable that the FAF can apply for various problems in engineering specially vibration equations.


Share and Cite

  • Share on Facebook
  • Share on X
  • Share on LinkedIn
ISRP Style

M. Mashinchi Joubari, R. Asghari, Analytical Solution for Nnonlinear Vibration of Micro-electromechanical System (MEMS) by Frequency-amplitude Formulation Method, Journal of Mathematics and Computer Science, 4 (2012), no. 3, 371--379

AMA Style

Mashinchi Joubari M., Asghari R., Analytical Solution for Nnonlinear Vibration of Micro-electromechanical System (MEMS) by Frequency-amplitude Formulation Method. J Math Comput SCI-JM. (2012); 4(3):371--379

Chicago/Turabian Style

Mashinchi Joubari, M., Asghari, R.. "Analytical Solution for Nnonlinear Vibration of Micro-electromechanical System (MEMS) by Frequency-amplitude Formulation Method." Journal of Mathematics and Computer Science, 4, no. 3 (2012): 371--379


Keywords

  • FAF
  • microbeams
  • Frequency-Amplitude Formulation

MSC

  •  74H45
  •  65L99
  •  34C15

References

  • [1] S. E. Lyshevski, MEMS and NEMS: systems, devices and structures, CRC Press, Boca Raton (2002)

  • [2] R. Osiander, M. Ann Garrison Darrin, J. L. Champion, MEMS and microstructures in aerospace applications, Taylor & Francis, Boca Raton (2006)

  • [3] D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, H. E. Jackson, A novel MEMS pressure sensor fabricated on an optical fiber, IEEE Photonics Technology Letters, 13 (2001), 993--995

  • [4] A. Jain, K. E. Goodson, Thermal microdevices for biological and biomedical applications, J. Therm. Biol., 36 (2011), 209--218

  • [5] X. L. Jia, J. Yang, S. Kitipornchai, C. W. Lim, Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces, Smart Mater. Struct., Vol. 19, (2010)

  • [6] S. I. Lee, S. W. Howell, A. Raman, R. Reifenberger, C. V. Nguyen, M. Meyyappan, Nonlinear tapping dynamics of multi-walled carbon nanotube tipped atomicforce microcantilevers, Nanotechnology, 15 (2004), 416--421

  • [7] R. C. Batra, M. Porfiri, D. Spinello, Electromechanical model of electrically actuated narrow microbeams, J. Microelectromech. Syst., 15 (2006), 1175--1189

  • [8] J. F. Rhoads, S. W. Shaw, K. L. Turner, The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation, J. Micromech. Microeng., 16 (2006), 890--899

  • [9] M. Moghimi Zand, M. T. Ahmadian, Application of homotopy analysis method in studying dynamic pull-in instability of microsystems, Mech. Res. Commun., 36 (2009), 851--858

  • [10] M. Moghimi Zand, M. T. Ahmadian, Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1664--1678

  • [11] Ç. Demir, Ö. Civalek, B. Akgöz, Free vibration analysis of carbon nanotubes based on shear deformable beam theory by discrete singular convolutiontechnique, Math. Comput. Appl., 15 (2010), 57--65

  • [12] B. Akgöz, Ö. Civalek, Application of strain gradient elasticity theory for buckling Analysis of protein microtubules, Curr. Appl. Phys., 11 (2011), 1133--1138

  • [13] Y. M. Fu, J. Zhang, L. J. Wan, Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS), Curr. Appl. Phys., 11 (2011), 482--485

  • [14] A. Fereidoon, D. D. Ganji, H. D. Kaliji, M. Ghadimi, Analytical solution for vibration of buckled beams, International Journal of Research and Reviews in Applied Sciences, 4 (2010), 17--21

  • [15] Y. Nawaz, Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations, Computers and Mathematics with Applications, 61 (2011), 2330--2341

  • [16] S. S. Ganji, A. Barari, M. G. Sfahani, G. Domairry, P. Teimourzadeh Baboli, Consideration of transient stream/aquifer interaction with the nonlinear Boussinesq equation using HPM, Journal of King Saud University-Science, 23 (2011), 211--216

  • [17] F. Farrokhzad, P. Mowlaee, A. Barari, A. J. Choobbasti, H. D. Kaliji, Analytical investigation of beam deformation equation using perturbation, homotopy perturbation, variational iteration and optimal homotopy asymptotic methods, Carpathian Journal of Mathematics, 27 (2011), 51--63

  • [18] C. Changbum, S. Rathinasamy, Homotopy perturbation technique for solving two-point boundary value problems–comparison with other methods, Computer Physics Communications, 181 (2010), 1021--1024

  • [19] M. Fooladi, S. R. Abaspour, A. Kimiaeifar, M. Rahimpour, On the Analytical Solution of Kirchhoff Simplified Model for Beam by using of Homotopy Analysis Method, World Applied Sciences Journal, 6 (2009), 297--302

  • [20] A. R.Ghotbi, H. Bararnia, G. Domairry, A. Barari, Investigation of a powerful analytical method into natural convection boundary layer flow, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 2222--2228

  • [21] A. R. Sohouli, M. Famouri, A. Kimiaeifar, G. Domairry, Application of homotopy analysis method for natural convection of Darcian fluid about a vertical full cone embedded in pours media prescribed surface heat flux, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 1691--1699

  • [22] J. H. He, Some Asymptotic Methods for Strongly Nonlinear Equations, International Journal of Modern Physics B, 20 (2006), 1141--1199

  • [23] Ö. Turgut, A. Yıldırım, Generating the periodic solutions for forcing van der Pol oscillators by the Iteration Perturbation method, Nonlinear Analysis: Real World Applications, 10 (2009), 1984--1989

  • [24] D. Younesian, M. KalamiYazdi, H. Askari, Z. Saadatnia, Frequency Analysis of Higher-order Duffing Oscillator using Homotopy and Iteration-Perturbation Techniques, In 18th annual international conference on mechanical engineering-ISME, 2010 (2010)

  • [25] J. F. Lu, An analytical approach to the Fornberg–Whitham type equations by using the variational iteration method, Computers and Mathematics with Applications, 61 (2011), 2010--2013

  • [26] X. F. Shang, D. F. Han, Application of the variational iteration method for solving nth-order integro-differential equations, Journal of Computational and Applied Mathematics, 234 (2010), 1442--1447

  • [27] A. Barari, H. D. Kaliji, M. Ghadimi, G. Domairry, Non-linear vibration of Euler-Bernoulli beams, Latin American Journal of Solids and Structures, Vol. 8, 139--148, (2011)

  • [28] Y. X. Zhao, A. Xiao, Variational iteration method for singular perturbation initial value problems, Computer Physics Communications, 181 (2010), 947--956

  • [29] A. A. Joneidi, D. D. Ganji, M. Babaelahi, Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity, International Communications in Heat and Mass Transfer, 36 (2009), 757--762

  • [30] H. I. H. Abdel-Halim, Application to differential transformation method for solving systems of differential equations, Applied Mathematical Modeling, 32 (2008), 2552--2559

  • [31] H. D. Kaliji, A. Fereidoon, M. Ghadimi, M. Eftari, Analytical Solutions for Investigating Free Vibration of Cantilever Beams, World Applied Sciences Journal (Special Issue of Applied Math), 9 (2010), 44--48

  • [32] L. Zhao, He’s frequency–amplitude formulation for nonlinear oscillators with an irrational force, Computers and Mathematics with Applications, 58 (2009), 2477--2479

  • [33] A. Fereidoon, M. Ghadimi, A. Barari, H. D. Kaliji, G. Domairry, Nonlinear vibration of oscillation systems using frequency-amplitude formulation, Journal of Shock and Vibration, 18 (2011), 1--10

  • [34] J. H. He, Max–min approach to nonlinear oscillators, Int. J. Nonlinear Sci. Numer. Simul, 9 (2008), 207--210

  • [35] L. B. Ibsen, A. Barari, A. Kimiaeifar, Analysis of highly nonlinear oscillation systems using He’s max–min method and comparison with homotopy analysis and energy balance methods, Sadhana, 35 (2010), 433--448

  • [36] S. S. Ganji, A. Barari, D. D. Ganji, Approximate analysis of two-mass–spring systems and buckling of a column, Computers and Mathematics with Applications, 61 (2011), 1088--1095

  • [37] M. G. Sfahani, S. S. Ganji, A. Barari, H. Mirgolbabaei, G. Domairry, Analytical solutions to nonlinear conservative oscillator with fifth-order nonlinearity, Earthquake Engineering and Engineering Vibration, 9 (2010), 367--374

  • [38] M. Ghadimi, H. D. Kaliji, A. Barari, Analytical Solutions to Nonlinear Mechanical Oscillation Problems, Journal of Vibroengineering, 13 (2011), 133--143