Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Monitoring heat losses using Landsat ETM+ thermal infrared data — a case study at Kuju fumarolic area in Japan

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

To monitor heat losses using Landsat 7 thermal infrared data from 2002 to 2010 within the active fumarolic region of Kuju volcano in Japan, we used the Stefan-Boltzmann equation for radiative heat flux (RHF) estimation. Heat discharge rate (HDR) was calculated by using the relationship coefficient of RHF and HDR, obtained from two previous studies. The highest total RHF was found to be about 57.7 MW in 2002 and the lowest was about 21.1 MW in 2010. We found the highest HDR, of about 384.5 MW, in 2002 and the lowest, of about 140.8 MW, in 2010. The RHF anomalous areas were showing a declining trend during our study period. The relationship between the land surface temperature (LST) above ambient and RHF was, as expected, in a strong correlation for each result during our study period. Overall, our study was able to delineate the declining trend of heat losses that supports a previous study of similar declining trend of HDR using steam maximum diameter method from the active fumarolic region of Kuju volcano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bromley, C.J., S.M. Van Manen, and W. Mannington (2011), Heat flux from steaming ground: reducing uncertainties. In: Proc. 36th Workshop on Geothermal Reservoir Engineering, 31 January–2 February 2011, Stanford University, Stanford, USA, SGP-TR-191.

    Google Scholar 

  • Ehara, S. (1992), Thermal structure beneath Kuju volcano, central Kyushu, Japan, J. Volcanol. Geoth. Res. 54,1–2, 107–115, DOI: 10.1016/0377-0273(92)90117-V.

    Article  Google Scholar 

  • Ehara, S., Y. Fujimitsu, J. Nishijima, A. Ono, and Y. Nakano (2000), Heat and mass transfer processes after 1995 phreatic eruption of Kuju volcano, central Kyushu, Japan. In: Proc. World Geothermal Congress 2000, 28 May–10 June 2000, Kyushu-Tohoku, Japan.

    Google Scholar 

  • Ehara, S., Y. Fujimitsu, J. Nishijima, K. Fukuoka, and M. Ozawa (2005), Change in the thermal state in a volcanic geothermal reservoir beneath an active fumarolic field after the 1995 phreatic eruption of Kuju volcano, Japan. In: Proc. World Geothermal Congress 2005, 24–29 April 2005, Antalya, Turkey.

    Google Scholar 

  • Harris, A.J.L., L. Lodato, J. Dehn, and L. Spampinato (2009), Thermal characterization of the Vulcano fumarole field, Bull. Volcanol. 71,4, 441–458, DOI: 10.1007/s00445-008-0236-8.

    Article  Google Scholar 

  • Hatae, K., Ko. Watanabe, Ka. Watanabe, T. Tsutsui, and K. Motomura (1997), Variation in content of vesiculated glasses in volcanic ash erupted from Kuju volcano in 1995–1996, Japan, J. Volcanol. Soc. Japan 42, 345–353 (in Japanese with English abstract).

    Google Scholar 

  • Hochstein, M.P., and C.J. Bromley (2001), Steam cloud characteristics and heat output of fumaroles, Geothermics 30,5, 547–559, DOI: 10.1016/S0375-6505(01)00012-8.

    Article  Google Scholar 

  • Jinnguuji, M., and S. Ehara (1997), Estimation of steam and heat discharge rate from volcanoes using maximum diameter of volcanic steam, J. Volcanol. Soc. Japan 41, 23–29 (in Japanese with English abstract).

    Google Scholar 

  • Kamata, H., and T. Kobayashi (1997), The eruptive rate and history of Kuju volcano in Japan during the past 15,000 years, J. Volcanol. Geoth. Res. 76,1–2, 163–171, DOI: 10.1016/S0377-0273(96)00076-5.

    Article  Google Scholar 

  • Kita, I., T. Kai, R. Itoi, M. Ishida, and A. Ueda (2009), Magmatic fluid input to the Kuju-Iwoyama hydrothermal system prior to the 1995 eruption of the Kuju volcano (Kyushu, Japan), Geothermics 38,3, 294–302, DOI: 10.1016/j.geothermics.2009.04.002.

    Article  Google Scholar 

  • Koga, M., and S. Ehara (2012), Thermal modeling of phreatic eruption processes of Kuju volcano based on the heat discharge rate and fumarolic temperature data, Geothermal and Volcanological Research Report of Kyushu University, 20, 142–152.

    Google Scholar 

  • Mia, M.B., and Y. Fujimitsu (2011), Study on satellite images based spectral emissivity, land surface temperature and land-cover in and around Kuju volcano, Central Kyushu, Japan, J. Adv. Sci. Eng. Res. 1,2, 177–191.

    Google Scholar 

  • Mia, M.B., and Y. Fujimitsu (2012), Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu, Japan, J. Earth Syst. Sci. 121,4, 1049–1057, DOI: 10.1007/ s12040-012-0211-9.

    Google Scholar 

  • Mia, M.B., C.J. Bromley, and Y. Fujimitsu (2012a), Monitoring heat flux using satellite based imagery at Karapiti (“Craters of the Moon”) fumaroles area, Taupo, New Zealand. In: Proc. 37th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, USA, SGP-TR-194.

    Google Scholar 

  • Mia, M.B., C.J. Bromley, and Y. Fujimitsu (2012b), Monitoring heat flux using Landsat TM/ETM+ thermal infrared data — A case study at Karapiti (“Craters of the Moon”) thermal area, New Zealand, J. Volcanol. Geoth. Res. 235–236, 1–10, DOI: 10.1016/j.jvolgeores.2012.05.005.

    Article  Google Scholar 

  • Mia, M.B., Y. Fujimitsu, and C.J. Bromely (2012c), Estimation and monitoring heat discharge rates using Landsat ETM+ thermal infrared data: A case study in Unzen geothermal field, Kyushu, Japan. In: Proc. SPIE “Land Surface Remote Sensing”, 29 October 2012, Kyoto, Japan, Vol. 8524, DOI: 10.1117/12.974475.

  • Mizutani, Y., S. Hayashi, and T. Sugiura (1986), Chemical and isotopic compositions of fumarolic gases from Kuju-Iwoyama, Kyushu, Japan, Geochem. J. 20,6, 273–285, DOI: 10.2343/geochemj.20.273.

    Article  Google Scholar 

  • Nakaboh, M., H. Ono, M. Sako, Y. Sudo, T. Hashimoto, and A.W. Hurst (2003), Continuing deflation by fumaroles at Kuju Volcano, Japan, Geophys. Res. Lett. 30,7, 1396, DOI: 10.1029/2002GL016047.

    Article  Google Scholar 

  • NASA (2009), Landsat 7 Science Data Users’ Handbook.

    Google Scholar 

  • Qin, Z., A. Karnieli, and P. Berliner (2001), A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region, Int. J. Remote Sens. 22,18, 3719–3746, DOI: 10.1080/01431160010006971.

    Article  Google Scholar 

  • Savage, S.L., R.L. Lawrence, S.G. Custer, J.T. Jewett, S.L. Powell, and J.A. Shaw (2010), Review of alternative methods for estimating terrestrial emittance and geothermal heat flux for Yellowstone National Park using Landsat imagery, GISci. Remote Sens. 47,4, 460–479, DOI: 10.2747/1548-1603.47.4.460.

    Article  Google Scholar 

  • Tomiyama, N., K. Koike, and M. Omura (2004), Detection of topographic changes associated with volcanic activities of Mt. Hossho using D-InSAR, Adv. Space Res. 33,3, 279–283, DOI: 10.1016/S0273-1177(03)00483-6.

    Article  Google Scholar 

  • Valor, E., and V. Caselles (1996), Mapping land surface emissivity from NDVI: Application to European, African, and South American areas, Remote Sens. Environ. 57,3, 167–184, DOI: 10.1016/0034-4257(96)00039-9.

    Article  Google Scholar 

  • Yamasaki, T., Y. Matsumoto, and M. Hayashi (1970), The geology and hydrothermal alterations of Otake geothermal area, Kujyo volcano group, Kyushu, Japan, Geothermics 2,1, 197–207, DOI: 10.1016/0375-6505(70)90020-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mia, M.B., Fujimitsu, Y. Monitoring heat losses using Landsat ETM+ thermal infrared data — a case study at Kuju fumarolic area in Japan. Acta Geophys. 61, 1262–1278 (2013). https://doi.org/10.2478/s11600-013-0115-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0115-3

Key words