Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Face Recognition Based on Improved Residual Network and Channel Attention

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

With the continuous development of deep learning, convolutional neural networks have achieved good results in the field of face recognition. However, deep convolutional neural networks have difficulty in convergence and optimization during the training process. The emergence of residual networks alleviates these problems. In addition, the channel attention mechanisms can help networks to selectively learn features that contain useful information, which can enhance the expressive ability of the network. In this paper, we first use the mish function to improve the original residual network to obtain the improved residual network named RESNET_IR, and then the CAM which is a kind of the channel attention mechanisms is introduced into the RESNET_IR to obtain the final network model named CAMRESNET_IR, making the extracted facial features more discriminative. The experimental results on LFW, CFP-FP, and AgeDB-30 show that our model can improve the performance of face recognition and maintain better results when the illumination, posture, and age change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Chen, X. and Huang, T., Facial expression recognition: A clustering-based approach, J. Pattern Recognit. Lett., 2003, vol. 24, no. 9, pp. 1295–1302.  https://doi.org/10.1016/S0167-8655(02)00371-9

    Article  MATH  Google Scholar 

  2. Ahonen, T., Hadid, A., and Pietikainen, M., Face description with local binary patterns: Application to face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 2006, vol. 28, no. 12, pp. 2037–2041.  https://doi.org/10.1109/TPAMI.2006.244

    Article  MATH  Google Scholar 

  3. Krizhevsky, A., Sutskever, I., and Hinton, G.E., Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst., 2012, vol. 25, pp. 1097–1105.

    Google Scholar 

  4. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.R., Improving neural networks by preventing co-adaptation of feature detectors, J. Comput. Sci., 2012, vol. 3, no. 4, pp. 212–223.

    Google Scholar 

  5. imonyan, K. and Zisserman, A., Very deep convolutional networks for large-scale image recognition, J. Computer Science, 2014. arXiv:1409.1556 [cs.CV

  6. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A., Going deeper with convolutions, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, 2004, IEEE, 2004, pp. 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  7. He, K., Zhang, X., Ren, S., and Sun, J., Deep residual learning for image recognition, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016, IEEE, 2016, pp. 770–778.  https://doi.org/10.1109/CVPR.2016.90

  8. Misra, D., Mish: A self regularized non-monotonic neural activation function, 2019. arXiv:1908.08681 [cs.LG]

  9. Taigman, Y., Yang, M., Ranzato, M.A., and Wolf, L., DeepFace: Closing the gap to human-level performance in face verification, IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, Ohio, 2014, IEEE, 2014, pp. 1701–1708.  https://doi.org/10.1109/CVPR.2014.220

  10. Huang, G.B., Mattar, M., Berg, T., and Learned-Miller, E., Labeled faces in the Wild: A database for studying face recognition in unconstrained environments, Dans Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition, 2008, pp. 189–248.

  11. Schroff, F., Kalenichenko, D., and Philbin, J., FaceNet: A unified embedding for face recognition and clustering, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, 2015, IEEE, 2015, pp. 815–823. https://doi.org/10.1109/CVPR.2015.7298682

  12. Parkhi, O. M., Vedaldi, A., and Zisserman, A., Deep face recognition, British Machine Vision Conference, 2015, pp. 1–12.

  13. Yin, X. and Liu, X., Multi-task convolutional neural network for pose-invariant face recognition, IEEE Trans. Image Process., 2018, vol. 27, no. 2, pp. 964–975.  https://doi.org/10.1109/TIP.2017.2765830

    Article  MathSciNet  MATH  Google Scholar 

  14. Qing, Y., Zhao, Y., Shi, Y., Chen, D., Lin, Yi., and Peng, Ya., Improve cross-domain face recognition with IBN-block, IEEE Int. Conf. on Big Data, 2018, IEEE, 2018, pp. 4613–4618.  https://doi.org/10.1109/BigData.2018.8622251

  15. Peng, S., Huang, H., Chen, W., Zhang, L., and Fang, W., More trainable inception-ResNet for face recognition, Neurocomputing, 2020, vol. 411, pp. 9–19. https://doi.org/10.1016/j.neucom.2020.05.022

    Article  Google Scholar 

  16. Yang, X., Jia, X., Gon, D., Yan, D.-M., Li, Zh., and Liu, W., LARNet: Lie algebra residual network for face recognition, Proc. Mach. Learn. Res., 2021, vol. 139, pp. 11738–11750. arXiv:2103.08147 [cs.CV]

  17. Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E., Squeeze-and-excitation networks, IEEE Trans. Pattern Anal. Mach. Intell., 2020, vol. 42, no. 8, pp. 2011–2023.  https://doi.org/10.1109/TPAMI.2019.2913372

    Article  Google Scholar 

  18. Woo, S., Park, J., Lee, J.Y., and Kweon, In So, CBAM: Convolutional block attention module, Computer Vision—ECCV 2018, Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds., Lecture Notes in Computer Science, vol. 11211, Cham: Springer, 2018, pp. 3–19.  https://doi.org/10.1007/978-3-030-01234-2_1

    Book  Google Scholar 

  19. Gao, Z., Xie, J., Wang, Q., and Li, P., Global second-order pooling convolutional networks, IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), Long Beach, Calif., 2019, IEEE, 2019, pp. 3019–3028. https://doi.org/10.1109/CVPR.2019.00314

  20. Hu, J., Shen, L., Albanie S., Sun, G., and Vedaldi, A., Gather-excite: Exploiting feature context in convolutional neural networks, Adv. Neural Inf. Process. Syst., 2018, vol. 31.

  21. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., and Hu, Q., ECA-Net: Efficient channel attention for deep convolutional neural networks, 2019. arXiv:1910.03151 [cs.CV]

  22. Yi, D., Lei, Z., Liao, S., and Li, S.Z., Learning face representation from scratch, J. Comput. Sci., 2014. arXiv:1411.7923 [cs.CV]

  23. Sengupta, S., Chen, J., Castillo, C., Patel, V.M., Chellappa, R., and Jacobs, D.W., Frontal to profile face verification in the wild, IEEE Winter Conf. on Applications of Computer Vision (WACV), Lake Placid, N.Y., 2016, IEEE, 2016, pp. 1–9.  https://doi.org/10.1109/WACV.2016.7477558

  24. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., and Zafeiriou, S., AgeDB: The first manually collected, in-the-wild age database, IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, Hawaii, 2017, IEEE, 2017, pp. 51–59.  https://doi.org/10.1109/CVPRW.2017.250

  25. Zhang, K., Zhang, Z., Li, Z., and Qiao, Yu, Joint face detection and alignment using multitask cascaded convolutional networks, IEEE Signal Process Lett., 2016, vol. 23, no. 10, pp. 1499–1503.  https://doi.org/10.1109/LSP.2016.2603342

    Article  Google Scholar 

  26. Deng, J., Guo, J., Xue, N., and Zafeiriou, S., ArcFace: Additive angular margin loss for deep face recognition, IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), Long Beach, Calif., 2019, IEEE, 2019, pp. 4690–4699.  https://doi.org/10.1109/CVPR.2019.00482

  27. Guo, Q., Wang, Z., and Fan, D., Multi-face recognition, 13th Int. Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Chengdu, China, 2020, IEEE, 2020, pp. 281–286.  https://doi.org/10.1109/CISP-BMEI51763.2020.9263565

  28. Wen, Y., Zhang, K., Li, Zh., and Qiao, Yu, A discriminative feature learning approach for deep face recognition, Computer Vision—ECCV 2016, Leibe, B., Matas, J., Sebe, N., and Welling, M., Eds., Lecture Notes in Computer Science, vol. 9911, Cham: Springer, 2016, pp. 499–515.  https://doi.org/10.1007/978-3-319-46478-7_31

    Book  Google Scholar 

  29. Qing, Y., Zhao, Y., Shi, Y., Chen, D., Lin, Y., and Peng, Ya., Improve cross-domain face recognition with IBN-block, IEEE Int. Conf. on Big Data (Big Data), Seattle, Wash., 2018, IEEE, 2018, pp. 4613–4618.  https://doi.org/10.1109/BigData.2018.8622251

  30. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Zh., and Liu, W., CosFace: Large margin cosine loss for deep face recognition, IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake City, Utah, 2018, IEEE, 2018, pp. 5265–5274.  https://doi.org/10.1109/CVPR.2018.00552

  31. Wang, X., Zhang, S., Wang, S., Fu, T., Shi, H., and Mei, T., Mis-classified vector guided softmax loss for face recognition, Proc. AAAI, 2020, vol. 34, no. 7, pp. 12241–12248.  https://doi.org/10.1609/aaai.v34i07.6906

  32. Shi, Y. and Jain, A.K., Probabilistic face embeddings, IEEE/CVF Int. Conf. on Computer Vision (ICCV), Seoul, Korea (South), 2019, IEEE, 2019, pp. 6901–6910.  https://doi.org/10.1109/ICCV.2019.00700

  33. Zeng, D., Shi, H., Du, H., Wang, J., Lei, Zh., and Mei, T., NPCFace: A negative-positive cooperation supervision for training large-scale face recognition, 2020. arXiv:2007.10172 [cs.CV]

  34. Tran, L., Yin, X., and Liu, X., Disentangled representation learning GAN for pose-invariant face recognition, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, 2017, IEEE, 2017, pp. 1283–1292.  https://doi.org/10.1109/CVPR.2017.141

  35. Ou, W.F., Po, L.M., Zhou, C., Zhang, Yu-J., Feng, Li-T., Ur Rehman, Ya.A., and Zhao, Yu-Zhi, LinCos-Softmax: Learning angle-discriminative face representations with linearity-enhanced cosine logits, IEEE Access, 2020, pp. 109758–109769. https://doi.org/10.1109/ACCESS.2020.3002270

Download references

Funding

This work was supported by the National Natural Science Foundation of China, grant no. 62071411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieyu Li.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jingfang Zeng, Li, J. & Feng, L. Face Recognition Based on Improved Residual Network and Channel Attention. Aut. Control Comp. Sci. 56, 383–392 (2022). https://doi.org/10.3103/S0146411622050108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411622050108

Keywords: