Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Mathematical Model of the Spread of Computer Attacks on Critical Information Infrastructure

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

This paper presents a mathematical model for the spread of computer attacks on critical information infrastructure based on the extension of the basic Lotka–Volterra model. Within the context of the proposed model, the problem is formulated, the point of stability of the system is determined, and a criterion is proposed for the adequacy of the attack detection methods to the changing parameters of the critical information infrastructure and existing cyber threats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Poltavtseva, M., Shelupanov, A., Bragin, D., Zegzhda, D., and Alexandrova, E., Key concepts of systemological approach to CPS adaptive information security monitoring, Symmetry, 2021, vol. 13, no. 12, p. 2425.  https://doi.org/10.3390/sym13122425

    Article  Google Scholar 

  2. Lavrova, D., Zegahda, D., and Yarmak, A., Predicting cyber attacks on industrial systems using the Kalman filter, Third World Conf. on Smart Trends in Systems Security and Sustainability (WorldS4), London, 2019, IEEE, 2019, pp. 317–321.  https://doi.org/10.1109/WorldS4.2019.8904038

  3. Zegzhda, D., Pavlenko, E., and Shtyrkina, A., Cybersecurity and control sustainability in digital economy and advanced production, The Economics of Digital Transformation, Devezas, T., Leitão, J., and Sarygulov, A., Eds., Studies on Entrepreneurship, Structural Change and Industrial Dynamics, Cham: Springer, 2021, pp. 173–185. https://doi.org/10.1007/978-3-030-59959-1_11

  4. Ovasapyan, T., Moskvin, D., and Tsvetkov, A., Detection of attacks on the Internet of Things based on intelligent analysis of devices functioning indicators, 13th Int. Conf. on Security of Information and Networks, Merkez, Turkey, 2020, New York: Association for Computing Machinery, 2020, pp. 1–7.  https://doi.org/10.1145/3433174.3433611

  5. Aiello, W.G., Freedman, H.I., and Wu, J., Analysis of a model representing stage - structure population growth with state-dependent time delay, SIAM J. Appl. Math., 1992, vol. 52, no. 3, pp. 855–869.  https://doi.org/10.1137/0152048

    Article  MathSciNet  MATH  Google Scholar 

  6. Mahmoud, A.W.A. and Abed, A.A.M.R., Developing methods for investigating stable motions in Lotka–Volterra systems with periodic perturbations, Vost.-Evrop. Zh. Peredovykh Tekhnol., 2015, vol. 1, no. 4, pp. 58–61.  https://doi.org/10.15587/1729-4061.2015.37800

    Article  Google Scholar 

  7. Kolmogorov, A.N., Qualitative study of mathematical models of population dynamics, Probl. Kibern., 1972, vol. 25, no. 2, pp. 101–106.

    MathSciNet  Google Scholar 

  8. MacArtur, R., Graphical analysis of ecological systems, Some Mathematical Questions in Biology, Lectures on Mathematics in the Life Sciences, vol. 2, Providence, R.I.: The American Mathematical Society, 1970.

    Google Scholar 

  9. Bazykin, A.D., Matematicheskaya biofizika vzaimodeistvuyushchikh populyatsii (Mathematical Biophysics of Interacting Populations), Moscow: Nauka, 1985.

  10. Titov, V.A. and Veinberg, R.R., Dynamic analysis of existing models based on Lotka–Volterra predator–prey equation, Fundam. Issled., 2016, no. 8-2, pp. 409–413.

  11. Minaev, V.A., Sychev, M.P., Vaits, E.V., and Gracheva, Yu.V., Mathematical predator–prey model in information security system, Inf. Bezop., 2016, vol. 19, no. 3, pp. 397–400.

    Google Scholar 

  12. Bratus’, A.S., Novozhilov, A.S., and Platonov, A.P., Dinamicheskie sistemy i modeli biologii (Dynamic Systems and Models of Biology), Moscow: Fizmatlit, 2011.

  13. Poincaré, A., Izbrannye trudy (Selected Works), Moscow: Nauka, 1972, vol. 2.

    Google Scholar 

  14. Romanov, M.F. and Fedorov, M.P., Matematicheskie modeli v ekologii. Uchebnoe posobie (Mathematical Models in Ecology: Textbook), St. Petersburg, Ivan Fedorov, 2003, 2nd ed.

  15. Volterra, V., Leçons sur la théorie mathématique de la lutte pour la vie, Paris: Gauthier-Villars, 1931.

    MATH  Google Scholar 

  16. Dolinskii, A., Draganov, B., and Kozirskii, V., Nonequilibrium state of engineering systems, ECONTECHMOD, 2012, vol. 1, no. 1, pp. 33–34.

    Google Scholar 

  17. Wangersky, P.J. and Cunningham, W.J., Time lag in prey-predator population models, Ecology, 1957, vol. 38, no. 1, pp. 136–139.  https://doi.org/10.2307/1932137

    Article  Google Scholar 

  18. Brauer, F., and Castillo-Chavez, C., Mathematical Models in Population Biology and Epidemiology, Heidelberg: Springer, 2000.

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

Project results are achieved using the resources of supercomputer center of Peter the Great St.Petersburg Polytechnic University—SCC Polytechnichesky (http://www.spbstu.ru).

Funding

The research is funded by the Ministry of Science and Higher Education of the Russian Federation under the strategic academic leadership program “Priority 2030” (agreement 075-15-2021-1333 dated November 30, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Krundyshev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krundyshev, V.M., Kalinin, M.O. Mathematical Model of the Spread of Computer Attacks on Critical Information Infrastructure. Aut. Control Comp. Sci. 56, 927–933 (2022). https://doi.org/10.3103/S0146411622080089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411622080089

Keywords: