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Abstract—The transient mode of a two-phase queuing system with a Poisson input flow, ex-
ponential distribution of service time in each phase, and a limitation on the total buffer size of
the two phases is considered. Nonstationary probabilities of system states are found using the
Laplace transform. A numerical calculation and analysis of the system performance charac-
teristics in transient mode with parameters corresponding to new-generation optical networks
were carried out.
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1. INTRODUCTION

Multiphase queuing systems (QSs), or so-called tandem networks, are widely used to describe
the operation of telecommunication systems, in which the process of processing requests consists of
several stages [1]. This class of systems includes, for example, multi-stage switching systems or a
network of linear topology base stations. Moreover, the stationary operation mode of such systems
is well studied both for the case of Poisson and correlated input flow. Let us note only some recent
works on this topic [1–7].

In recent years, in addition to the study of the stationary mode of QSs, the study of the transient
mode of their operation has continued. For example, an important problem in designing optical
telecommunication networks with high information transfer rates is to study changes in the system
performance characteristics over time and estimate the transition time in stationary mode after the
system reboot process or a failure of service devices [8]. A similar situation arises when studying
new-generation 5G and 6G networks [9]. Due to the relevance of this problem, in recent years
the number of works devoted to the study of the transient operating mode of QSs and their non-
stationary Markov models has increased [10–19]. One of the first works where such a problem for
a two-phase QS with a Poisson input flow, an infinite buffer in the first phase, and a zero buffer in
the second phase was considered is the paper of 1967 [20]. In further works, more complex systems
are studied, such as systems with phase-type service time [11, 12] and various types of tandem
networks [14, 15]. It should be noted that in most of these works, the authors do not provide
final expressions that allow analyzing the performance characteristics of the QS in the transient
mode, but use ready-made numerical methods of existing software packages. An analysis of the
stability of non-stationary Markov processes with continuous time, describing the functioning of
the main classes of QSs with non-stationary input flows, including those varying according to a
sinusoidal law, was carried out in [10, 13, 18, 19]. In [21–23], the main performance characteristics
of single-line and multi-line QSs with Poisson and correlated flows in transient mode are analyzed.
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This work studies the non-stationary performance characteristics of a two-phase QS with a
limitation on the total buffer size of the two phases. One example of a real system, the model of
which is represented by this QS, is a car service station with two stages of service: diagnostics and
repair. Cars queued for service at each stage are placed in a common parking lot with a certain
number of parking spaces, which determines the limit on the total number of cars simultaneously
located at the service station. The stationary mode of this QS was studied in [24]. There is no
study of the non-stationary mode of such a system in the world literature, which determines the
novelty of this article.

The structure of the article is as follows. Section 3 presents differential equations that describe
the functioning of a two-phase QS, for the convenience of writing which new functions are intro-
duced. Section 4 presents an expression for finding the probabilities of states of a two-phase QS,
containing an auxiliary matrix, the elements of which are found using the Laplace transform appa-
ratus. Section 5 provides expressions for finding the main performance indicators of a two-phase
QS in transient mode. The numerical results of the study are presented in Section 6.

2. STATEMENT OF THE PROBLEM

A two-phase QS with one single-line service device on each phase is considered. The input flow
is Poisson with intensity λ, and the time for servicing requests by devices of the first and second
phases has an exponential distribution with intensities μ1 and μ2, respectively.

After completing the servicing of a request in the first phase, each request moves to the second
phase. The number of requests in the first and second phases can take the values n1 = 0, N ,
n2 = 0, N , respectively, where N is the maximum number of requests in the system. In this case, a
limitation is imposed on the total buffer size of the two phases of the system, such that n1+n2 � N
at any time. A new request can enter the system only under the condition n1 + n2 < N (Fig. 1).

Fig. 1. System state graph.
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TRANSIENT BEHAVIOR OF A TWO-PHASE QUEUING SYSTEM 51

The purpose of this work is to analyze the performance characteristics of the system described
above in transient mode, such as transition time, loss probability, throughput, and the average
number of requests in the system.

3. CONSTRUCTION OF DIFFERENTIAL EQUATIONS DESCRIBING THE FUNCTIONING
OF A TWO-PHASE QS WITH A LIMITATION ON THE TOTAL BUFFER SIZE

TheMarkov process describing the operation of the considered QS consists of R= 1
2

(
N2+3N+2

)
states of the system S (n1, n2, t), when n1 requests are served in the first phase, and n2 requests
are served in the second phase at time t, where n1 + n2 � N (Fig. 1). The system of differential
equations for such a QS has the form:

dP (0, 0, t)

dt
= −λP (0, 0, t) + μ2P (0, 1, t), (n1, n2 = 0);

dP (0, n2, t)

dt
= −(λ+ μ2)P (0, n2, t) + μ2P (0, n2 + 1, t) + μ1P (0, n2 − 1, t),

(n1 = 0, n2 = 1, N − 1);

dP (0, N, t)

dt
= −μ2P (0, N, t) + μ1P (1, N − 1, t), (n1 = 0, n2 = N);

dP (n1, 0, t)

dt
= − (λ+ μ2)P (n1, 0, t) + μ2P (n1, 1, t) + λP (n1 − 1, 0, t) ,

(n1 = 1, N − 1, n2 = 0);

dP (N, 0, t)

dt
= −μ1P (N, 0, t) + λP (N − 1, 0, t), (n1 = N,n2 = 0);

dP (n1, n2, t)

dt
= − (λ+ μ1 + μ2)P (n1, n2, t) + μ2P (n1, n2 + 1, t)

+μ1P (n1 + 1, n2 − 1, t) + λP (n1 − 1, n2, t), (n1, n2 > 0, n1 + n2 < N);

dP (n1, n2, t)

dt
= − (μ1 + μ2)P (n1, n2, t) + μ1P (n1 + 1, n2 − 1, t)

+λP (n1 − 1, n2, t), (n1, n2 > 0, n1 + n2 = N).

(1)

It should be noted that the well-known approach to constructing a system of differential equa-
tions, which involves the use of various forms of writing the equations for different permissible
values of n1 and n2, is very inconvenient for calculating and analyzing the characteristics of the
QS in the transient mode. For the convenience of further solution and analysis of system (1), we
introduce the functions

υ1 (x,M) =
|x−M + 0.5| + x−M + 0.5

2 |x−M + 0.5| , (2)

υ2 (x,K) =
|K − x− 0.5|+K − x− 0.5

2 |K − x− 0.5| , (3)

where M = 0, N , K = 0, N . Then system (1) can be written in the form

dP (n1, n2, t)

dt
= − [λυ2 (n1 + n2, N − 1) + μ1υ1 (n1, 1) + μ2υ1 (n2, 1)]P (n1, n2, t)

+ μ1υ1 (n2, 1) υ2 (n1 + n2, N)P (n1 + 1, n2 − 1, t) + μ2υ2 (n1 + n2, N − 1)

× P (n1, n2 + 1, t) + λυ1 (n1, 1) υ2 (n1 + n2, N)P (n1 − 1, n2, t) , (4)
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where n1 = 0, N , n2 = 0, N , n1 + n2 � N . The described system can be represented in matrix
form:

d	P (t)

dt
= A	P (t) , (5)

where A is the matrix of coefficients of the system of differential Eqs. (4), 	P (t) = {P (n1, n2, t)}T
is the column vector of system state probabilities. To construct the matrix A, we additionally
introduce the function

ϑ (nk, nl) = (N + 1)nk + nl − nk (nk − 1)

2
+ 1, (6)

transforming the number of requests nk, nl in the first and second buffer, respectively, into the
number of a column or row of this matrix. A brief description of functions (2), (3) and (6) is given
in the Appendix. Then the elements of the matrix of system (5), located on the main diagonal, are
written in the form

Aϑ(n1,n2),ϑ(n1,n2) = − [λυ2 (n1 + n2, N) + μ1υ1 (n1, 1) + μ2υ1 (n2, 1)] . (7)

The remaining non-zero elements are determined by the relations

Aϑ(n1,n2),ϑ(n3,n4) = μ1υ1 (n2, 1) υ2 (n1 + n2, N + 1) ;

Aϑ(n1,n2),ϑ(n1,n5) = μ2υ2 (n1 + n2, N) ;

Aϑ(n1,n2),ϑ(n6,n2) = λυ1 (n2, 1) υ2 (n1 + n2, N + 1) . (8)

Here n1 = 0, N , n2 = 0, N , n3 = n1 + 1, n4 = n2 − 1, n5 = n2 + 1, n6 = n1 − 1. The remaining
elements Ai,j of the matrix A in (5) are equal to zero. The new function (6) is also necessary for
the ordered construction of a column vector of system state probabilities at time t in equation (5).
Indeed, in terms of nk and nl it has the form

	P (t) = {p (0, 0, t) , . . . , p (0, N, t) , p (1, 0, t) , . . . ,

p (1, N − 1, t) , . . . . . . , p (N − 1, 0, t) , p (N − 1, 1, t) , p(N, 0, t)}T , (9)

where T is the transposition operator. However, to correctly solve (5), it is necessary to use not a
two-dimensional array of numbers nk and nl when indicating the state of the system, but a sequence
number from 1 to R = 1

2

(
N2 + 3N + 2

)
. To do this, using function (6), we finally obtain

	P (t) = {P (1, t) , P (2, t) , P (3, t) , P (4, t) , . . . , P (ϑ (nk, nl) , t) , . . . , P (ϑ (N, 0) , t)}T , (10)

where P (ϑ (nk, nl) , t) corresponds to p (nk, nl, t) in (9).

Thus, using the functions ϑ (nk, nl), υ1 (x,M), υ2 (x,K) makes it possible to construct a matrix
of coefficients in (5) in general form for any number of requests N .

4. STATE PROBABILITIES OF A TWO-PHASE QS IN A TRANSIENT MODE

To connect the system state probabilities at time t with the probabilities of system states at
some initial time t0, we introduce the matrix L, the order of which is one greater than the order of
the fundamental matrix of the system of equations (4) and such that

	P (t) = L (t− t0) 	P (t0) , (11)

where 	P (t) = {P (ϑ (n1, n2) , t)}T is the vector column of system state probabilities at time t.
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Let us apply the direct Laplace transform to the system of equations (5):

∞∫
0

e−std
	P (t)

dt
dt =

∞∫
0

e−stA	P (t)dt. (12)

Then the elements of the matrix L (t− t0) are determined by the following theorem.

Theorem 1. The elements of the matrix L (t− t0) of a two-phase QS with a limitation on the
total buffer size of two phases N , described by the system of equations (4), have the form

Ll,j (t− t0) =
R∑

k=1

(−1)l+j Δj,l(sk)
dΔ(s)
ds

∣∣∣
s=sk

exp (sk (t− t0)), (13)

where Δ(s) is the determinant of the matrix B = A − sI, A is the coefficient matrix in (5), I is
the unit diagonal matrix, s = α+ iβ is the independent variable in the complex domain, i =

√−1,
Δli(s) is the determinant of the minor element Bli of the matrix B, sk is the kth root of the
polynomial Δ(s) in the case when all its roots are simple, R = (N2 + 3N + 2)/2 is the number of
roots of the polynomial Δ(s), equal to the number of differential equations in system (4).

Proof. Considering that
∫∞
0 e−st

(
d	P (t)
dt

)
dt = s 	P (s)− 	P (0), where 	P (0) is the column vector

of initial conditions, and also that in this case A is a constant matrix, let us carry out the trans-
formations

s 	P (s)− 	P (0) = A	P (s) ⇒ A	P (s)− s 	P (s) = −	P (0) ⇒ (A− sI) 	P (s) = −	P (0) . (14)

As a result, we obtain a system of linear inhomogeneous algebraic equations

B	P (s) = −	P (0) (15)

with constant coefficients. Taking into account (4), system (15) can be written in the form

− [λυ2 (n1 + n2, N − 1) + μ1υ1 (n1, 1) + μ2υ1 (n2, 1) + s]P (n1, n2, s)

+ μ1υ1 (n2, 1) υ2 (n1 + n2, N)P (n1 + 1, n2 − 1, s) + μ2υ2 (n1 + n2, N − 1)P (n1, n2 + 1, s)

+ λυ1 (n1, 1) υ2 (n1 + n2, N)P (n1 − 1, n2, s) = P (n1, n2, 0) , (16)

where n1 = 0, N , n2 = 0, N , n1 + n2 � N . Then, in accordance with (7) and (8), the non-zero
elements of the matrix B are written as

Bϑ(n1,n2),ϑ(n1,n2)(s) = − [λυ2 (n1 + n2, N) + μ1υ1 (n1, 1) + μ2υ1 (n2, 1) + s] ;

Bϑ(n1,n2),ϑ(n3,n4)(s) = μ1υ1 (n2, 1) υ2 (n1 + n2, N + 1) ;

Bϑ(n1,n2),ϑ(n1,n5) = μ2υ2 (n1 + n2, N) ;

Bϑ(n1,n2),ϑ(n6,n2)(s) = λυ1 (n2, 1) υ2 (n1 + n2, N + 1) . (17)

To find images of elements of the matrix L it is necessary to use linearly independent initial
conditions. These conditions are:

P (N1, N2, 0) = 1(N1 = 0, N,N2 = 0, N,N1+N2 � N);P (n1, n2, 0) = 0(n1 �= N1, n2 �= N2). (18)

Solutions to system (16) for P (n1, n2, 0) = 1 (n1 = n2 = 0), P (n1, n2, 0) = 0 (n1 = 1, N , n2 = 1, N ,
n1 + n2 � N) give the first column of images of the elements of the transformation matrix, the
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solution to system (15) for P (0, 1, 0) = 1 and the rest P (n1, n2, 0) = 0 give the second column of
images of the elements of the transformation matrix. Similarly, all columns of images of elements of
the transformation matrix L (s− s0) are found. To obtain an image of the matrix L, it is advisable
to use the Cramer method. In accordance with this method, the elements of the matrix, which are
linearly independent solutions (16), are fractions of the form

Ll,j (s− s0) = (−1)l+j Δj,l(s)

Δ(s)
, (19)

where Δ(s) is the determinant of the matrix B, Δjl(s) is the minor of the element Bjl of the
matrix B. Now consider the inverse Laplace transform. First of all, we note that the image of the
element of the probability transformation matrix (19) is a proper fraction

Ll,j (s− s0) = (−1)l+j Δj,l(s)

Δ(s)
= (−1)l+j ans

n + an−1s
n−1 + . . . + a2s

2 + a1s+ a0
bmsm + bm−1sm−1 + . . .+ b2s2 + b1s+ b0

. (20)

Moreover, n < m, since the numerator is the determinant of the algebraic complement of the matrix
element whose determinant is in the denominator. Then the fraction in (20) can be factorized

L (s) =
Δj,l(s)

Δ(s)
= A1

1

s− s1
+A2

1

s− s2
+ . . .+Am

1

s− sm
=

m∑
k=1

Ak
1

s− sk
. (21)

To find the coefficients Ak, multiply both sides of (21) by (s− s1) and get

L (s) =
Δj,l(s)

Δ(s)
(s− s1) = A1 + (s− s1)

m∑
k=2

Ak
1

s− sk
. (22)

The right-hand side of (22) at s → s1 is equal to A1, since s− s1 → 0. The left side represents the
uncertainty 0/0, since the factor s− s1 is present in both the numerator and the denominator. Let
us reveal this uncertainty using L’Hopital’s rule and obtain the left-hand side in the form

lim
x→x1

Δj,l(s)

Δ(s)
(s− s1) = lim

x→x1

Δj,l(s) + (s− s1)
dΔj,l(s)

ds
dΔ(s)
ds

=
Δj,l(s1)[

dΔ(s)
ds

]
|s=s1

. (23)

Taking into account (22) and (23), we obtain

A1 =
Δj,l(s1)[

dΔ(s)
ds

]
|s=s1

. (24)

Similarly, we find the kth coefficient in (22) as

Ak =
Δj,l(sk)[

dΔ(s)
ds

]
|s=sk

. (25)

Thus, expression (21) takes the form

L (s) =
m∑
k=1

Δj,l(sk)[
dΔ(s)
ds

]
|s=sk

· 1

s− sk
. (26)
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Applying the inverse Laplace transform to (26) and carrying out mathematical transformations

L (t) =
1

2πi

σ+i∞∫
σ−i∞

m∑
k=1

Δj,l(sk)[
dΔ(s)
ds

]
|s=sk

exp(st)ds

s− sk
=

1

2πi

m∑
k=1

Δj,l(sk)[
dΔ(s)
ds

]
|s=sk

σ+i∞∫
σ−i∞

exp(st)ds

s− sk

=
m∑
k=2

Δj,l(sk)[
dΔ(s)
ds

]
|s=sk

exp(skt), (27)

we obtain an expression for the original from image (26) in the form (12). The theorem has been
proven.

By substituting (27) and expression (11), we can find the probabilities of states of a two-phase
QS in the transition mode under given initial conditions. These expressions make it possible to
calculate and analyze the performance indicators of the system under consideration at an arbitrary
moment of time t in both transient and stationary modes: the time before the system enters
stationary mode, the probability of losses, throughput, and the number of requests served in each
phase.

5. PERFORMANCE INDICATORS OF A TWO-PHASE QS IN TRANSIENT MODE

5.1. Transition Time

The transition time is the time during which the QS goes into stationary mode. In accordance
with [22], the time of the transition mode is determined by the smallest absolute value of the real
part of the pole of the state probability images:

τtr =
k

αmin
. (28)

Here ∀αj ∈ Γ: (Γ = αj , αj � αmin =⇒ αj = αmin) and k > 0, k ∈ R. The value of k is selected
based on the formulation of a specific problem. It was shown in [22] that the transition mode can
be considered completed when k = (3÷ 5).

5.2. Probability of Losses

Since the maximum number of requests in the system is n1 + n2 = N , all requests in the states
(i,N − i), i = 0, N will be lost. Considering that the presence of requests in the specified states
are independent events, the sum of the probabilities of these states at time t

Ploss (t) =
N∑
i=0

P (i,N − i, t) =
N∑
i=0

P (ϑ (i,N − i) , t) (29)

determines the probability of loss of requests.

5.3. Throughput

Since expression (29) determines the resulting probability of requests being lost in the system,
it is obvious that requests entering the system in any other states will be serviced. Then the
throughput at time t in the transition mode is equal to

A (t) = [1− Ploss (t)]λ =

[
1−

N∑
i=0

P (i,N − i, t)

]
λ =

[
1−

N∑
i=0

P (ϑ (i,N − i) , t)

]
λ. (30)
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Since the throughput actually represents the intensity of the system servicing the requests received
by it, then in the time dt the system services A (t) dt requests. Consequently, during the transition
mode the number of requests served is equal to

Zservice tr =

t0+τtr∫
t0

λ

[
1−

N∑
i=0

P (ϑ (i,N − i) , t)

]
dt, (31)

and the number of lost requests is

Zloss tr =

t0+τtr∫
t0

λ
N∑
i=0

P (ϑ (i,N − i) , t) dt. (32)

Thus, the sum of (31) and (32) gives the number of requests received during the transition
mode λτtr, which confirms the correctness of the obtained relationships.

5.4. Number of Requests Served at Each Phase in Transition Mode

Let P (n1, n2, t) be the probability of finding n1 requests in the first phase and n2 requests in
the second phase at time t, then the number of requests in the first phase, provided that the system
is in the state (n1, n2), is equal to n1P (n1, n2, t). Summing n1P (n1, n2, t) over all possible states,
we obtain the average number of requests in the first phase at time t as

Zphase1 (t) =
N∑

n1=0

N∑
n2=0

[n1P (n1, n2, t)] =
N∑

n1=0

N∑
n2=0

[n1P (ϑ (n1, n2) , t)] , (33)

where n1 +n2 � N . Similarly, the average number of requests in the second phase at time t in the
transition mode is equal to

Zphase2 (t) =
N∑

n1=0

N∑
n2=0

[n2P (n1, n2, t)] =
N∑

n1=0

N∑
n2=0

[n2P (ϑ (n1, n2) , t)] , (34)

where n1 + n2 � N . Then the average number of requests in the system in the transition mode
will be

Z (t) =
N∑

n1=0

N∑
n2=0

[(n1 + n2)P (n1, n2, t)] =
N∑

n1=0

N∑
n2=0

[(n1 + n2)P (ϑ (n1, n2) , t)] , (35)

where n1 + n2 � N .

6. NUMERICAL STUDY OF A TWO-PHASE QS TRANSIENT MODE

Let us consider the transient mode of a two-phase QS operation, which adequately describes the
operation of a switch in an all-optical network. In the presented numerical experiment, the values
λ = 8 · 106 packets/s, μ1 = 15 · 106 packets/s, μ2 = 10 · 106 packets/s (λ < μ2 < μ1) correspond to
the actual characteristics of modern optical networks [25]. Here n1 is the number of packets in the
first servicing phase, n2 is the number of packets in the second servicing phase, N = n1 + n2 = 4
is the maximum number of packets in the system. The small buffer size in this numerical example
is determined by the technical limitations of modern optical devices.

To analyze the performance characteristics of the considered QS, first of all, the matrix A is
constructed in accordance with (7) and (8), and then the matrix B is constructed in accordance
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Fig. 2. Dependence of system state probabilities on time in transition mode.

with (17). Next, the elements of the matrix L(t) are written in accordance with (13). To do
this, we find the poles of functions that describe the elements of the matrix L(s− s0) in terms
of the Laplace transform: s0 = 0, s1 = −1.2 · 107, s2 = −2.8 · 107, s3,4 = −3.9 · 107 ± i1.9 · 107,
s5,6 = −3.2 · 107 ± i9.9 · 107, s7,8 = −2.8 · 107 ± i1.2 · 107, s9,10 = −5.1 · 107 ± i1.4 · 107, s11,12 =
−1.5 · 107 ± i6.0 · 107, s13,14 = −2.2 · 107 ± i4.0 · 107. One of these poles is zero, all others have
a negative real part. This indicates the presence of a stationary mode in the system. Moreover,
12 of the 15 poles are pairwise complex conjugate, which indicates the oscillatory nature of the
probabilities of states in the transition mode. Indeed, the exponent of a complex number in (12) is
a combination of trigonometric functions in accordance with Euler’s formula.

Studying the poles of state probability images also allows one to calculate the time constant us-
ing formula (28) τ = 1/ |αmin| = 1/5 138 202.473908113 = 1.9462 · 10−7 s and transition time τtr =
5τ = 9, 731 · 10−7 s.

The dependence of state probabilities on time for the case under consideration is presented in
Fig. 2. The figure shows: Pidle(t) is the probability that the system is free; Pphase1(t), Pphase2(t) are
dependencies of the probabilities of the states of finding requests only in the first and only in the
second phases of service, respectively; Ploss(t) is the probability of losses calculated in accordance
with (29).

From Fig. 2 it can be seen that the time of the transition mode, calculated from (28), corre-
sponds to the time of reaching the stationary mode according to the state probability graphs. The
oscillatory nature of the transition mode is clearly visible from the dependence of the probability
of finding requests in the first phase of service Pphase1(t) (Fig. 3). Note that the probabilities of
states in a stationary mode, obtained by the authors using the proposed approach, are equal to
the stationary probabilities calculated using a well-known technique [24]. Indeed, from Fig. 2, it
is clear that πidle = 0.167, πloss = 0.172, πphase1 = 0.24, πphase2 = 0.49, which corresponds to the
stationary probabilities calculated using formulas (6) and (7) presented in [24].

Next, the performance indicators of the considered QS are calculated in accordance with Sec-
tion 5 of this work.
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Fig. 3. Dependence of the average number of requests in each phase on time.

Fig. 4. Dependence of system throughput on time in transition mode.

Figure 4 shows the dependence of the system throughput on time in the transient mode, calcu-
lated in accordance with (30). The system throughput at the initial time is equal to 8·106 packets/s
and decreases to a stationary value of 6.62 · 106 packets/s. Studying changes in the throughput of
an all-optical switch in transient mode makes it possible to obtain more accurate estimates of its
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Fig. 5. Dependence of system state probabilities on time in transition mode.

performance, taking into account possible switch reboots when changing information transmission
routes in all-optical networks.

Figure 5 shows the time dependence of the number of packets in the first and second phases, as
well as the total number of packets in the system in the transient mode, calculated in accordance
with (33)–(35). It can be seen that until the moment t = 0.28 · 10−7 s the number of packets in
the first phase exceeds the number of packets in the second phase. At the same time, in stationary
mode, the average number of packets in the first phase is less than in the second phase of service,
which is obvious, since μ1 > μ2. Considering that the number of requests in the first and second
phases of the QS under study corresponds to the number of packets processed in the first and
second stages of the all-optical switch [8], the results obtained make it possible to estimate the
degree of filling of the switch buffers during the transition mode.

As the buffer size increases, the size of the matrices in (12) increases, which requires additional
computational resources. Figure 4 shows the calculation of a two-phase system with a buffer volume
of N = 15: the probability of losses Ploss(t) and the probability that the system is empty, Pidle(t).
The graph shows that with an increase in the buffer size, the probability of losses in the stationary
mode decreased — πloss = 0.1, and the time of the transition mode increased — τtr = 4 · 10−7 s.

7. CONCLUSION

In this paper, the transient mode of a two-phase QS with a Poisson input flow, an exponential
law of distribution of service time in each phase and a limitation on the total buffer size of two
phases is considered and analyzed. Previously, the non-stationary mode of such a system was not
considered in the world literature. However, it is of interest for various applications, in particular in
the design of all-optical network switches. It should be noted that the study of the non-stationary
mode of an all-optical switch allows a more accurate assessment of its performance metrics, which
differ significantly from stationary values due to the high information transfer rate of all-optical
networks [8].
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A system of differential equations describing the functioning of this QS is presented, the solu-
tion of which is written using the Laplace transform. The characteristics of system performance
in transient mode, such as the probability of losses, throughput, the average number of serviced
requests, and the transition time, were obtained. Obviously, as the buffer size increases, obtaining
numerical solutions to the characteristics of a two-phase QS with a limited buffer is a computa-
tionally intensive task and requires the use of high-performance computing systems or the use of
approaches based on simulation modeling and machine learning [26].
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APPENDIX

Formally, eliminating certain terms in equations (4) and preserving the remaining ones can be
done using the Heaviside function. However, this function is essentially logical, not analytical, and,
therefore, does not allow one to write down an expression for the probabilities of system states in
a general form. In particular, when using it in program code, it is necessary to organize additional
loops. Therefore, to enable a compact analytical representation of the system of equations (4), the
analytical function was introduced

σ1 (x, x0) =
|x− x0|+ x− x0

2 |x− x0| . (A.1)

Thus, the function limiting from below the permissible states of the system has the form

υ1 (x,M) =
|x−M + 0.5| + x−M + 0.5

2 |x−M + 0.5| . (A.2)

For example, for M = 0 the function υ1 (x,M) has the form shown in Fig. 6.

A shift of 0.5 along the time axis was chosen due to the fact that otherwise, in the state x = M
of the system, this function would be indefinite, and its derivative would tend to infinity at this
point. Similarly with (A.1), we introduce the function

σ2 (x, x0) =
|x0 − x|+ x0 − x

2 |x0 − x| . (A.3)

Thus, the function that limits from above the permissible states of the system can be written in
the form

υ2 (x,K) =
|K − x− 0.5|+K − x− 0.5

2 |K − x− 0.5| , (A.4)

where K = 0, N is the state of the system. For K = 4, the function υ2 (x,M) has the form shown
in Fig. 7.

Fig. 6. Function υ1 (x, 0).
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Fig. 7. Function υ2 (x, 4).

Fig. 8. Function υ (x, 0, 4).

Obviously, the function limiting the permissible range of values from the smallest M to the
largest K takes the form

υ (x,M,N) = υ1 (x,M) υ2 (x,N)

=
(|x−M + 0.5| + x−M + 0.5) (|K − x− 0.5| +K − x− 0.5)

4 |x−M + 0.5| |K − x− 0.5| . (A.5)

For example, with M = 0 and K = 4 it has the form shown in Fig. 8.

In relation to the problem being solved, x can take the values n1, n2, n1 + n2, etc. The advantage
of functions (A.2), (A.4) and (A.5) is the absence of conditions. However, it should be noted that
such conditions still exist when the module is expanded. However, despite the fact that these
functions do not speed up the calculation process, they allow for analytical study of the resulting
expressions and simplify the program code.

To find the function ϑ (nk, nl) (see (6)), which transforms a pair of numbers nk, nl, characterizing
the state of the system, into the column number of the matrix A, let us analyze the following
pattern for N = 4: for nk = 0 the values of nl change from 0 to N , and the values of ϑ (nk, nl)
change from 1 up to N + 1; for nk = 1 the values of nl change from 0 to N − 1, and the values of
ϑ (nk, nl) change from N + 2 to 2N + 1; for nk = 2 the values of nl change from 0 to N − 2, and
the values of ϑ (nk, nl) change from 2N + 2 to 3N ; for nk = 3 the values of nl change from 0 to
N − 3, and the values of ϑ (nk, nl) change from 3N + 1 to 4N − 2; for nk = 4 we have nl = 0 and
ϑ (nk, nl) = 4N − 1. Therefore, the expression for ϑ (nk, nl) must contain the term nk (N + 1), as
well as the term nl. Thus, for nk = 0:

ϑ (0, nl) = (N + 1)nk + nl + 1 = (N + 1)nk + nl + 0 · (−0.5) + 1, (A.6)

for nk = 1:

ϑ (1, nl) = (N + 1)nk + nl + 1 = (N + 1)nk + nl − 1 · 0 + 1, (A.7)
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for nk = 2:

ϑ (2, nl) = (N + 1)nk + nl + 0 = (N + 1)nk + nl − 2 · 0.5 + 1, (A.8)

for nk = 3:

ϑ (3, nl) = (N + 1)nk + nl − 2 = (N + 1)nk + nl − 3 · 1 + 1, (A.9)

for nk = 4:

ϑ (4, nl) = (N + 1)nk + nl − 5 = (N + 1)nk + nl − 4 · 1.5 + 1, (A.10)

for nk = m:

ϑ (m,nl) = (N + 1)m+ nl − (m+ 1) = (N + 1)m+ nl −m
m− 1

2
+ 1. (A.11)

Thus, expressions (A.6)–(A.11) connect a pair of numbers to the corresponding ordinal number
of the element in the row (column) of the coefficient matrix. It is easy to check that relation (6) is
valid for any N .
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