As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Different levels of knowledge certainty, or factuality levels, are expressed in clinical health record documentation. This information is currently not fully exploited, as the subtleties expressed in natural language cannot easily be machine analyzed. Extracting relevant information from knowledge-intensive resources such as electronic health records can be used for improving health care in general by e.g. building automated information access systems. We present an annotation model of six factuality levels linked to diagnoses in Swedish clinical assessments from an emergency ward. Our main findings are that overall agreement is fairly high (0.7/0.58 F-measure, 0.73/0.6 Cohen's κ, Intra/Inter). These distinctions are important for knowledge models, since only approx. 50% of the diagnoses are affirmed with certainty. Moreover, our results indicate that there are patterns inherent in the diagnosis expressions themselves conveying factuality levels, showing that certainty is not only dependent on context cues.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.