As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we report on our recent efforts towards adapting a Discontinuous Galerkin Time-Domain solver for computational bioelectromagnetics to the novel, heterogeneous architecture proposed in the DEEP-ER european project on exascale computing. This architecture is based on the Cluster/Booster division concept which will be recalled. As a first step, we summarize the key features of the application and present the outcomes of a profiling of the code using the tools developed by DEEP-ER partners. We then go through the subsequent general improvements of the application as well as specific developments aimed at exploiting efficiently the DEEP-ER platform. This particularly includes porting the application to the Intel®Many Integrated Core Architecture. We conclude with an outlook on next steps, including the different Cluster/Booster division strategies.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.