As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
As the complexity of computing systems grows, reliability and energy are two crucial challenges that will demand holistic solutions. In this paper, we investigate the interplay among concurrency, power dissipation, energy consumption and voltage-frequency scaling for a key numerical kernel for the solution of sparse linear systems. Concretely, we leverage a task-parallel implementation of the Conjugate Gradient method, equipped with an state-of-the-art preconditioner embedded in the ILUPACK software, and target a low-power multicore processor from ARM. In addition, we perform a theoretical analysis on the impact of a technique like Near Threshold Voltage Computing (NTVC) from the points of view of increased hardware concurrency and error rate.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.