As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In the context of time-critical applications there exists the need of clustering data streams so as to provide approximated solutions in the shortest possible time, in order to capture in real-time the evolution of physical or social phenomena. In this work, a nature-inspired algorithm for clustering of evolving big data stream is presented, which is designed to be executed on many-core GPU architectures.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.