As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Establishing structured reconstruction models and efficient reconstruction algorithms according to practical engineering needs is of great concern in the applied research of Compressed Sensing (CS) theory. Targeting problems during high-speed video capture, the paper proposes a set of video CS scheme based on intra-frame and inter-frame constraints and Genetic Algorithm (GA). Firstly, it employs the intra-frame and inter-frame correlation of the video signals as the priori information, creating a video CS reconstruction model on the basis of temporal and spatial similarity constraints. Then it utilizes overcomplete dictionary of Ridgelet to divide the video frames into three structures, smooth, single-oriented, or multijointed. Video frames cluster according to the structure using Affinity Propagation (AP) algorithm, and finally clusters are reconstructed using evolutionary algorithm. It is proved efficient in terms of reconstruction result in the experiment.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.