Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tan, Henry | Hadzic, Fedja | Dillon, Tharam S.
Affiliations: Department of Computing, Curtin University of Technology, Perth, Australia, [email protected]
Note: [] Address for correspondence: Digital Ecosystems and Business Intelligence Institute (DEBII), Curtin University of Technology, Perth, Australia
Abstract: The increasing need for representing information through more complex structures where semantics and relationships among data objects can be more easily expressed has resulted in many semi-structured data sources. Structure comparison among semi-structured data objects can often reveal valuable information, and hence tree mining has gained a considerable amount of interest in areas such as XML mining, Bioinformatics, Web mining etc. We are primarily concerned with the task of mining frequent ordered induced and embedded subtrees from a database of rooted ordered labeled trees. Our previous contributions consist of the efficient Tree Model Guided (TMG) candidate enumeration approach for which we developed a mathematical model that provides an estimate of the worst case complexity for embedded subtree mining. This potentially reveals computationally impractical situations where one would be forced to constrain the mining process in some way so that at least some patterns can be discovered. This motivated our strategy of tackling the complexity of mining embedded subtrees by introducing the Level of Embedding constraint. Thus, when it is too costly to mine all frequent embedded subtrees, one can decrease the level of embedding constraint gradually down to 1, from which all the obtained frequent subtrees are induced subtrees. In this paper we develop alternative implementations and propose two algorithms MB3-R and iMB3-R, which achieve better efficiency in terms of time and space. Furthermore, we develop a mathematical model for estimating the worst case complexity for induced subtree mining. It is accompanied with a theoretical analysis of induced-embedded subtree relationships in terms of complexity for frequent subtree mining. Using synthetic and real world data we practically demonstrate the space and time efficiency of our new approach and provide some comparisons to the two well know algorithms for mining induced and embedded subtrees.
Keywords: Algorithms, Performance, Experimentation, Tree Mining, TreeMiner, FREQT, TMG, Tree Model Guided
DOI: 10.3233/FI-2012-733
Journal: Fundamenta Informaticae, vol. 119, no. 2, pp. 187-231, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]