Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Fu, Tao* | Ding, Ning | Gao, Jihao
Affiliations: College of Electronic Engineering, Zhengzhou Railway Vocational & Technical College, Zhengzhou, Henan, China
Correspondence: [*] Corresponding author: Tao Fu, College of Electronic Engineering, Zhengzhou Railway Vocational & Technical College, Zhengzhou, Henan 450000, China. E-mail: [email protected]
Abstract: In order to improve the quality of millimeter wave communication in indoor environment and ensure the maximum use of link resources. It is proposed to construct indoor communication transmission characteristics through multi sphere link model and indoor millimeter wave reflection blocking model. At the same time, the improved PMVC algorithm and CTRA algorithm are used to optimize the resource scheduling of links in indoor central scenes and edge scenes respectively. The simulation results show that compared with the original PVC algorithm and greedy algorithm, PMVC has a maximum link throughput of 5.01 Gbps under the optimized scheduling of the improved vertex coloring algorithm, while the maximum throughput of the traditional vertex coloring algorithm and greedy algorithm are 4.73 Gbps and 4.57 Gbps respectively. In the case of fixed link transmission beam width, as the number of link flows increases, the slot throughput of the link decreases continuously. Under the width of 30, the maximum slot throughput of PMVC algorithm is 2.75 Gbps, and the maximum slot throughput of greedy algorithm is 2.48 Gbps; When the beam width is 60, the maximum slot throughput of PMVC algorithm and greedy algorithm is 2.25 Gbps and 1.55 Gbps respectively. The proposed PMVC resource scheduling method can effectively alleviate the shortage of indoor spectrum resources and reduce indoor transmission interference of millimeter wave.
Keywords: Millimeter wave, vertex shading algorithm, CTRA algorithm, link resources, indoor model
DOI: 10.3233/JCM-226916
Journal: Journal of Computational Methods in Sciences and Engineering, vol. 23, no. 5, pp. 2549-2562, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]