Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy, Sushmita Mitra and Ljiljana Trajkovic
Article type: Research Article
Authors: Shukla, Alok Kumar; * | Singh, Pradeep | Vardhan, Manu
Affiliations: Department of Computer Science and Engineering, NIT Raipur, Chhattisgarh (C.G), India
Correspondence: [*] Corresponding author. Alok Kumar Shukla, Department of Computer Science and Engineering, NIT Raipur, Chhattisgarh (C.G), 492010, India. E-mail: [email protected].
Abstract: In the recent era, evolutionary meta-heuristic algorithms is popular research area in engineering and scientific field. One of the intelligent evolutionary meta-heuristic algorithms is Teaching Learning Based Optimization (TLBO). The basic TLBO algorithm follows the isolated learning strategy for the whole population. This invariable learning strategy may cause the misconception of knowledge for a specific learner, which makes it unable to deal with different complex situations. For solving the complex non-linear optimization problems, local optimum frequently happens in the generating process. To resolve these kinds of problem, this paper introduces Neighbour based TLBO (NTLBO) and differential mutation. The concept of neighbour learning and differential mutation is introduced to improve the convergence solution after each run of experiment. Neighbour learning method maintains the explorative and exploitation search of the population and discourages the premature convergence. The efficiency of the proposed algorithm is evaluated on eight benchmark functions of Congress on Evolutionary Computation (CEC) 2006. The proposed NTLBO present extensive comparative study with the state-of-the-art forms of the meta-heuristic algorithms for standard benchmark functions. The result shows that the proposed NTLBO gives the superior performance over recent meta-heuristic algorithms.
Keywords: Differential mutation, explorative and exploitation, meta-heuristic, neighbour learning, Teaching learning-based optimization
DOI: 10.3233/JIFS-169453
Journal: Journal of Intelligent & Fuzzy Systems, vol. 34, no. 3, pp. 1583-1594, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]