As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Word embeddings have become the predominant representation scheme on a token-level for various clinical natural language processing (NLP) tasks. More recently, character-level neural language models, exploiting recurrent neural networks, have again received attention, because they achieved similar performance against various NLP benchmarks. We investigated to what extent character-based language models can be applied to the clinical domain and whether they are able to capture reasonable lexical semantics using this maximally fine-grained representation scheme. We trained a long short-term memory network on an excerpt from a table of de-identified 50-character long problem list entries in German, each of which assigned to an ICD-10 code. We modelled the task as a time series of one-hot encoded single character inputs. After the training phase we accessed the top 10 most similar character-induced word embeddings related to a clinical concept via a nearest neighbour search and evaluated the expected interconnected semantics. Results showed that traceable semantics were captured on a syntactic level above single characters, addressing the idiosyncratic nature of clinical language. The results support recent work on general language modelling that raised the question whether token-based representation schemes are still necessary for specific NLP tasks.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.