As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Multimorbidity is a major problem for patients and health services. However, we still do not know much about the common trajectories of disease accumulation that patients follow. We apply a data-driven method to an electronic health record dataset (CPRD) to analyse and condense the main trajectories to multimorbidity into simple networks. This analysis has never been done specifically for multimorbidity trajectories and using primary care based electronic health records. We start the analysis by evaluating temporal correlations between diseases to determine which pairs of disease appear significantly in sequence. Then, we use patient trajectories together with the temporal correlations to build networks of disease accumulation. These networks are able to represent the main pathways that patients follow to acquire multiple chronic conditions. The first network that we find contains the common diseases that multimorbid patients suffer from and shows how diseases like diabetes, COPD, cancer and osteoporosis are crucial in the disease trajectories. The results we present can help better characterize multimorbid patients and highlight common combinations helping to focus treatment to prevent or delay multimorbidity progression.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.