As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this study, an attempt has been made to differentiate normal and cardiomegaly using cardio-mediastinal ratiometric features and machine learning approaches. A total of 60 chest radiographs including normal and cardiomegaly subjects are considered from a public dataset. The images are preprocessed using edge aware contrast enhancement technique to improve the edge contrast of lung boundaries. The mediastinal, cardiac and thoracic widths and their ratiometric indices are computed to characterize the morphological variations. The features are fed to three different classifiers for the differentiation of normal and cardiomegaly. Results show that the Linear discriminant analysis classifier is found to perform better with average values of recall 88.7%, precision 88.8%, and area under the curve 91.9%. Hence, the proposed computer aided diagnostic approach appears to be clinically significant to distinguish normal and cardiomegaly especially in remote and resource – poor settings.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.