As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Electronic patient charts are essential for follow-up and multi-disciplinary care, but either take up an exorbitant amount of time during the patient encounter using a key-stroke entry system, or suffer from poor recall when made long after the encounter. Transcribing in-situ, natural dictations by the clinician, recorded during the encounter, with minimal workflow impact, is a promising solution. However, human transcription requires significant manual resources, whereas automated transcription currently lacks the accuracy for specialized clinical language. Our ultimate goal is to automate clinical transcription, particularly for Emergency Departments, with as an end-result a structured SOAP report. Towards this goal, we present the Adaptive Clinical Transcription System (ACTS). We compare the accuracy and processing times of state-of-the-art speech recognition tools, studying the feasibility of streaming-style dynamic transcription and opportunities of incremental learning.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.