As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Decision-making based on so-called medical guidelines supported by semantic AI solutions is an essential and significant task for medical personnel in both a pre-clinical setting and an inner-clinical environment. Semantic representations of medical guidelines and Fast Healthcare Interoperability Resources (FHIR) using Semantic Web technologies, i.e., Resource Description Framework (RDF), rules (RuleML and Prova), and Shape Constraint Language (SHACL), provide a semantic knowledge base for the decision-making process and ease technical implementation and automation tasks. Current medical decision support systems lack Semantic Web integration using FHIR-RDF representations as a data source. In this paper, we implement a particular medical guideline using two different approaches: Prova [8] and SHACL [13]. We generate a series of raw FHIR-data for a selected guideline, the ABCDE approach, and compare the implemented two programs’ (Prova and SHACL) results. Both approaches deliver the same results in terms of content. Both may be used within a distributed medical environment depending on the need of organizations.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.