As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Chronic Obstructive Pulmonary Disease (COPD) exacerbation exhibits a set of overlapping symptoms with various forms of cardiovascular disease, which makes its early identification challenging. Timely identification of the underlying condition that caused acute admission of COPD patients in the emergency room (ER) may improve patient care and reduce care costs. This study aims to use machine learning combined with natural language processing (NLP) of ER notes to facilitate differential diagnosis in COPD patients admitted to ER. Using unstructured patient information extracted from the notes documented at the very first hours of admission to the hospital, four machine learning models were developed and tested. The random forest model demonstrated the best performance with F1 score of 93%.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.