As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Hemodialysis patients frequently require ambulance transport to the hospital for dialysis. Some patients require urgent dialysis (UD) within 24 hours of transport to hospital to avoid morbidity and mortality. UD is not available in all hospitals; therefore, predicting patients who need UD prior to hospital transport can help paramedics with destination planning. In this paper, we developed machine learning models for paramedics to predict whether a patient needs UD based on patient characteristics available at the time of ambulance transport. This paper presented a study based on ambulance data collected in Halifax, Canada. Given that relatively few patients need UD, a class imbalance problem is addressed by up-sampling methods and prediction models are developed using multiple machine learning methods. The achieved prediction scores are F1-score=0.76, sensitivity=0.76, and specificity=0.97, confirming that models can predict UD with limited patient characteristics.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.