As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Respiratory tract infections are a serious threat to health, especially in the presence of antimicrobial resistance (AMR). Existing AMR detection methods are limited by slow turnaround times and low accuracy due to the presence of false positives and negatives. In this study, we simulate 1,116 clinical metagenomics samples on both Illumina and Nanopore sequencing from curated, real-world sequencing of A. baumannii respiratory infections and build AI models to predict resistance to amikacin. The best performance is achieved by XGBoost on Illumina sequencing (area under the ROC curve = 0.7993 on 5-fold cross-validation).
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.