Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Knowledge Graphs: Construction, Management and Querying
Guest editors: Mayank Kejriwal, Vanessa Lopez and Juan F. Sequeda
Article type: Research Article
Authors: Heyvaert, Pieter; * | De Meester, Ben | Dimou, Anastasia | Verborgh, Ruben
Affiliations: IDLab, Department of Electronics and Information Systems, Ghent University – imec, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium. E-mails: [email protected], [email protected], [email protected], [email protected]
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Knowledge graphs, which contain annotated descriptions of entities and their interrelations, are often generated using rules that apply semantic annotations to certain data sources. (Re)using ontology terms without adhering to the axioms defined by their ontologies results in inconsistencies in these graphs, affecting their quality. Methods and tools were proposed to detect and resolve inconsistencies, the root causes of which include rules and ontologies. However, these either require access to the complete knowledge graph, which is not always available in a time-constrained situation, or assume that only generation rules can be refined but not ontologies. In the past, we proposed a rule-driven method for detecting and resolving inconsistencies without complete knowledge graph access, but it requires a predefined set of refinements to the rules and does not guide users with respect to the order the rules should be inspected. We extend our previous work with a rule-driven method, called Resglass, that considers refinements for generation rules as well as ontologies. In this article, we describe Resglass, which includes a ranking to determine the order with which rules and ontology elements should be inspected, and its implementation. The ranking is evaluated by comparing the manual ranking of experts to our automatic ranking. The evaluation shows that our automatic ranking achieves an overlap of 80% with experts ranking, reducing this way the effort required during the resolution of inconsistencies in both rules and ontologies.
Keywords: Inconsistency, knowledge graph, methodology, resolution, rule-driven
DOI: 10.3233/SW-190358
Journal: Semantic Web, vol. 10, no. 6, pp. 1071-1086, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]