Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
DÄ internationalArchive35-36/2021Fifth Metatarsal Fracture

Original article

Fifth Metatarsal Fracture

A Systematic Review of the Treatment of Fractures of the Base of the Fifth Metatarsal Bones

Dtsch Arztebl Int 2021; 118: 587-94. DOI: 10.3238/arztebl.m2021.0231

Herterich, V; Baumbach, S F; Kaiser, A; Böcker, W; Polzer, H

Background: Metatarsal fractures are among the most common foot and ankle injuries, with an annual incidence of 6.7 per 100 000 persons. Approximately 30% of metatarsal fractures affect the base of the fifth metatarsal bone. Nevertheless, no evidence-based treatment recommendations are available to date.

Methods: The three fracture localizations according to Lawrence and Botte (zone I, proximal to the intermetatarsal joint between the fourth and fifth metatarsal bones; zone II, in the area of the joint; zone III, at the distal end of the joint) are analyzed on the basis of a systematic literature search. Studies were included that compared the treatment of two types of fracture in the same manner, or that compared two different treatments for a single type of fracture.

Results: Nine studies compared different treatments of zone I fractures. Two of these were randomized controlled trials (RCTs); in one RCT, patients given functional therapy returned to work much sooner than those treated with immobilization (11 vs. 28 days; p = 0.001), with otherwise similar outcomes. The non-randomized studies revealed a faster return to full function (33 vs. 46 days; p<0.05) with early functional therapy, and similar outcomes for immobilization and surgery. One RCT that compared functional therapy with immobilization for zone II fractures revealed no statistically significant difference. Five studies compared fractures in zones I and II that were treated in the same manner, revealing similar outcomes. One RCT compared surgery and immobilization for zone III fractures: surgery led to statistically significant improvement of the outcome in all of the measured parameters.

Conclusion: Fractures in zones I and II should be treated with early functional therapy. There seems to be no reason to consider zone I and II fractures as two separate entities, as the outcomes in the two groups are similar. In contrast, fractures in zone III should primarily be treated surgically.

LNSLNS

Metatarsal fractures are among the most common foot injuries, with an incidence of approx. 6.7 per 100 000 persons (1), with the base of the fifth metatarsal bone (MT5) being most commonly involved. For the present review, the authors conducted a retrospective analysis of their own patient population over a period of two years (eFlowchart). Of 372 isolated metatarsal fractures, 30% involved the base of MT5 (Figure 1).

Flowchart showing patient selection process from the clinical and radiological databases for the acquisition of the frequency of metatarsal fractures
eFigure
Flowchart showing patient selection process from the clinical and radiological databases for the acquisition of the frequency of metatarsal fractures
Retrospective analysis of the distribution of metatarsal fractures within the authors’ own patient population. Schematic diagram of the distribution of fractures of the metatarsals, within the 5th metatarsal bone (base, shaft, distal) and within the base of the 5th metatarsal
Figure 1
Retrospective analysis of the distribution of metatarsal fractures within the authors’ own patient population. Schematic diagram of the distribution of fractures of the metatarsals, within the 5th metatarsal bone (base, shaft, distal) and within the base of the 5th metatarsal

In 1902, Sir Robert Jones proved for the first time that sprains of the foot can result in fractures of the base of MT5 (2). The majority of these have been shown to heal quickly and uneventfully with time under conservative treatment, while others have developed painful non-unions. So, differentiation according to the different types of fracture at the base of MT5 would appear to be crucial for any treatment recommendation. The most commonly used classification at present was described by Lawrence und Botte (3) in 1993 and distinguishes three fracture types:

  • Zone 1: proximal to the 4th-5th intermetatarsal articulation (“avulsion fracture”)
  • Zone 2: at the level of the articulation (“Jones fracture”)
  • Zone 3: at the distal end of the articulation (“diaphyseal stress fracture”) (Figure 2a).

Unfortunately, the literature does not use uniform terminology here, with the result that the various studies report different treatment outcomes supposedly for the same fracture. Consequently, there have been no consistent treatment recommendations to date (4). Moreover, the majority of those that do exist are not evidence-based. Recommended treatment has therefore been a matter of debate ever since the times of Sir Robert.

The aim of the present review article was to develop evidence-based treatment recommendations for fractures of the base of MT5, based on a systematic search of the literature.

Methods

The systematic literature search was conducted according to the PRISMA statement (5) and PICOS model (eTable 1) (6) in MEDLINE (PubMed), CINAHL, Scopus, EMBASE, CENTRAL from database inceptions until 05. 07. 2020. The study protocol was prospectively registered in PROSPERO (CRD42020185294). The systematic literature search was conducted by two independent examiners (VH, HP) using Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia). The included articles were analyzed according to Lawrence and Botte’s (3) classification of fracture location (Figure 2a). The Methodological Index for Non-randomized Studies (MINORS) was used to evaluate the methodological quality of the study (7). Evaluation of the level of evidence was conducted according to the criteria described by Wright et al. (8). A detailed description of the methodology can be found in the eMethods section.

Inconsistent use of the term “Jones-fracture” in the various classifications and a new proposal for a treatment-based classification
Figure 2
Inconsistent use of the term “Jones-fracture” in the various classifications and a new proposal for a treatment-based classification
Overview of comparative studies with different treatment regimens for zone 1 fractures
Table 1
Overview of comparative studies with different treatment regimens for zone 1 fractures
PICOS criteria
eTable 1
PICOS criteria

Results

The study selection according to the PRISMA guidelines is presented in Figure 3. The search strategy identified 2498 articles. After excluding all irrelevant hits, 17 of the 113 full texts examined met the inclusion criteria (eTable 2, Figure 3). Using the MINORS criteria, an average of 82% of the maximum score was achieved for study quality. A meta-analysis was not possible due to the large variance of the follow-up periods (12.4 ± 12.9 months; 2–53 months) and the different target parameters.

Flowchart of study selection using the PRISMA specifications
Figure 3
Flowchart of study selection using the PRISMA specifications
Overview of comparative studies with different treatment regimens for zone 2 fractures (according to L & B) or the same treatment for zone 1 and zone 2 fractures
Table 2
Overview of comparative studies with different treatment regimens for zone 2 fractures (according to L & B) or the same treatment for zone 1 and zone 2 fractures
Overview of the included review articles
eTable 2
Overview of the included review articles

Zone 1 fractures

Nine studies compared different forms of treatment for zone 1 fractures (9, 10, 11, 12, 13, 14, 15, 16, 17), and five (9, 10, 11, 12, 13) compared early functional conservative management with immobilization (Table 1). Two of these were prospective randomized controlled studies (RCT) (9, 10). Akimau et al. found no statistically significant differences in their results for the “Visual Analogue Scale Foot and Ankle” and the EQ-5D (Health-related Quality of Life) (9). Bayram et al. observed a statistically significant faster return to work, as well as statistically significant higher VAS-FA scores with functional therapy (10). The other three studies were prospective, but not randomized (11, 12, 13). Wiener et al. observed a statistically significant faster return to pre-injury levels with early functional management (13), Nishikawa et al. a statistically significant shorter average time for bone healing with immobilization (12). Otherwise, there were no statistically significant differences with regard to consolidation rate or functional outcome.

Two RCTs compared surgical treatment with restrictive conservative management (immobilization and non-weight bearing) (14, 15). Wu et al. (14) observed statistically significant shorter work incapacity and Lee et al. (15) a statistically significant shorter time for bone healing with surgery. Both studies demonstrated very good results with no clinically relevant differences between the treatment groups with regard to patient-reported treatment outcomes (VAS, VAS-FA, AOFAS [American Orthopedic Foot and Ankle Society Score]).

Two studies compared different surgical procedures (16, 17). Both articles reported a faster rate of bony consolidation after open reduction.

Three studies (10, 15, 18) assessed the impact of different fracture patterns (displacement [> 2 mm], intra-articular involvement [>30% of the cuboid articular surface], number of fragments) on treatment outcome. None of the fracture characteristics had an effect on the working/sports ability or the functional result with early functional management.

Zone 2 fractures

Piyapittayanun et al. undertook a prospective randomized comparison between early functional conservative management and immobilization for zone 2 fractures (19). There were no statistically significant differences in the functional outcomes after eight weeks (Table 2).

Five studies compared zone 1 with zone 2 fractures treated in the same manner (18, 20, 21, 22, 23) (Table 2). Three involved early functional conservative management (18, 20, 21). The articles reported no statistically significant differences between the two fracture types which had very good functional results. Choi et al. and Mahajan et al. compared fractures in zones 1 and 2 after surgical management and also discovered no statistically significant differences (22, 23). In the study by Choi et al., hardware irritation developed which resulted in plate removal (22); in one case, Mahajan et al. had to exchange screw fixation for tension band wiring (23).

Zone 3 fractures

Two articles examined fractures in zone 3 (24, 25). Mologne et al. (24) conducted a prospective randomized comparison between conservative and surgical treatment (Table 3). Surgical treatment produced significantly better results for all of the study parameters. Oliveira Massada et al. compared fractures in zones 2 and 3 after screw fixation and discovered no statistically significant differences (25).

Overview of comparative studies with different treatment regimens for zone 2 fractures (according to L & B) or the same treatment for zone 1 and zone 2 fractures
Table 3
Overview of comparative studies with different treatment regimens for zone 2 fractures (according to L & B) or the same treatment for zone 1 and zone 2 fractures

Discussion

Overall, there was a limited number of studies available for comparison, and their quality was at times restricted. Nevertheless, after due differentiated consideration, treatment recommendations for the different fracture types involving the base of MT5 can be derived.

Zone 1 fractures

Most authors recommend conservative treatment for extra-articular, non-displaced fractures in zone 1 (9, 26). The recommendations vary from early functional management to immobilization or non-weight bearing (27, 28). Analysis of the studies showed that early functional treatment was superior to immobilization or surgery with regard to time until return to work/restoration of full function (10, 12, 13, 14, 17). Consolidation and re-fracture rates, return to full function, and results for pain (VAS-FA, VAS), quality of life (EQ-5D) and foot function (AOFAS, ModFS [“modified foot score”]) were comparable for all treatment modalities. Immobilization or surgery was superior to functional conservative management only for time until radiological consolidation. The time until radiological consolidation is irrelevant to the patient, however. There was no indication for change of treatment, even for a case of asymptomatic non-union. For this reason, some authors recommend dispensing with scheduled follow-up radiographs altogether (27). Accordingly, the authors only obtain a follow-up radiograph for pain persisting longer than six weeks.

The effect of fracture characteristics is currently the subject of intensive discussions in the literature. Many authors recommend surgery for displacement (>2 mm), intra-articular involvement (30%) or multifragmental fractures, but without scientific studies to back this up. These are therefore expert opinions and not study-based recommendations (29). Three studies looked explicitly at the impact of these fracture characteristics (10, 15, 18). In none of them was there an effect on treatment outcome. One reason for recommending surgery is concern for post-traumatic osteoarthritis. The follow-up period of most of the studies was too short, however, to be able to exclude this. The authors conducted follow-up reviews after 5.7 years for their own patient population. These results had remained excellent when compared with those after two years (18), irrespective of the fracture characteristics (30). It would also have been expected that the authors would be regularly confronted with cases of post-traumatic osteoarthritis. However, these do not appear to play a role in everyday clinical practice (31).

Conclusion: Based on the available studies, early functional therapy is recommended for zone 1 fractures. This also applies to displaced, intra-articular and comminuted fractures.

Zone 2 fractures

There are conflicting recommendations for the management of zone 2 fractures. Some authors report very good results for early functional conservative management (18, 19, 20), while others report better outcomes after surgery (22, 23, 25). One likely reason for this is the use of the eponym “Jones fracture” for both zone 2 and zone 3 fractures. Although only one study compared immobilization with early functional treatment for zone 2 fractures (19), it did show very good results for early functional treatment. Unfortunately, there are no studies currently available comparing surgical and conservative management of zone 2 fractures. On looking at the results of those studies applying conservative treatment for zone 1 and zone 2 fractures, return to full function after 47–63 days is evident, compared with 73 and 75 days, respectively, after surgery. The AOFAS after functional treatment was 89–99 points and 90–94 points after surgery. In this respect, functional therapy appears to result in a faster return to full function and to comparable/better functional outcomes (AOFAS). Comparative studies are required for any conclusive assessment.

Conclusion: Early functional treatment produces very good functional results for zone 2 fractures. When compared with studies which undertook surgical management, functional therapy appears to result in a faster return to full function and to at least equivalent functional outcomes.

Zone 3 fractures

Many authors recommend surgery primarily for patients with a high functional demand and conservative management for patients with a low demand (3, 32). However, in an RCT, Mologne et al. demonstrated better statistically significant results for all study parameters after screw fixation in comparison with conservative treatment. The differences were very impressive, with 44% treatment failures after conservative management as compared with 5% after surgery, which involved an eight-week shorter time until full weight-bearing (24). The long period of immobilization of eight weeks in the conservatively treated group should be noted. However, the majority of authors recommend immobilization during conservative management of these fracture types for at least six, and up to 20, weeks (3, 33). Given the high rate of treatment failures and the significantly prolonged immobilization/non-weight bearing time during conservative treatment, the present authors do not consider it justified to reserve surgery only for patients with high functional demands—it should be recommended to all patients.

Conclusion: Surgical management of zone 3 fractures with screw fixation appears to be significantly superior to conservative treatment; primary surgical management should therefore be recommended to all affected patients.

Recent review articles

Some systematic reviews on the subject are already available. In the following, the three most recent reviews from the year 2020 (34, 35, 36) are considered by way of example. Wang et al. (34) did not distinguish between fracture types, but instead pooled all fractures of the base of MT5 together – which would not appear to make sense, according to current knowledge. Rikken et al. (35) analyzed the different Lawrence und Botte fracture types, while Khan et al. (36) focused on “tuberosity fractures” and excluded “true Jones fractures”— yet without actually defining the terms, so that it remains unclear which fractures were ultimately examined. In none of the three studies was any distinction made between the various forms of conservative management, but instead all modalities were grouped together. None of the articles were confined to comparative studies, but also included case series. Nevertheless, all treatment outcomes were pooled and assessed together, regardless of when the data was collected. Furthermore, no study analyzed the fracture characteristics. The weaknesses of current systematic reviews underline the value of a differentiated analysis of existing studies.

Terminology

There is a lack of uniform terminology applied in daily clinical practice for fractures of the base of MT5. This observation was also confirmed during the analysis of the included studies. In six of the 17 included studies there was no clear differentiation based on a classification system (11, 13, 14, 19, 21, 25). Different expressions were used in the various studies for zone 1 fractures (“avulsion fracture”, “tuberosity fracture”, “tuberosity avulsion fracture”). The term “Jones fracture” appeared in different variations (“Jones fracture”, “true Jones fracture”, “pseudo-Jones avulsion fracture”) in nine articles (11, 13, 17, 18, 19, 20, 23, 24, 25). The term “Jones” was used for zone 2 fractures in seven of the nine studies (13, 17, 18, 19, 20, 23, 25) and for zone 3 fractures in two studies (11, 24).

This vagueness is a fundamental problem, as it means that the terms used do not clearly specify the fracture types. The result is that various studies report different treatment results for the supposedly same type of fracture; however, the fracture types were in fact different. Accordingly, in the authors‘ view, the term „Jones fracture“ should be avoided altogether. More than this, however, a clear designation according to anatomical criteria would appear more appropriate. Since there does not appear to be any differences between zone 1 and zone 2 fractures, regardless of treatment, they should all be described as epi-metaphyseal fractures. They should be distinguished from meta-diaphyseal fractures at the distal end of the MT 4–5 articulation (Figure 2b).

Limitations

The main limitation of this systematic review was the small number of available studies for the individual fracture types and the limited number of cases. Yet, it is precisely the differentiated, zone-specific analysis of the available studies that is essential for providing any valid treatment recommendation. Furthermore, the quality of the included studies was at times limited, as evidenced by the results for the MINORS score. The risk of bias due to the restricted study quality must be borne in mind when interpreting the results; nevertheless, more than one third of the included studies were indeed prospectively randomized. Although the number of available studies is limited, a differentiated view still shows a clear trend that does allow recommendations. Future studies on zone 1 and 2 fractures, irrespective of the group under investigation, should include early functional treatment as a control group since they have so far produced the best outcomes. Unfortunately, this was not the case in all of the included studies.

Conclusion

There is only a limited number of comparative studies dealing with the management of fractures of the base of MT5. Nevertheless, a differentiated analysis of the existing articles does allow treatment recommendations to be made. Fractures in zones 1 and 2 show very good results with early functional therapy. Displacement and joint involvement have no impact on treatment outcome. All these fractures may therefore be subjected to early functionally treatment. When the results of the only available RCT are analyzed, then surgical treatment is clearly superior to conservative management for fractures in zone 3. Surgical management of these fractures would therefore appear appropriate. Since there does not seem to be any difference between zone 1 and zone 2 fractures, they should all be grouped together as epi-metaphyseal fractures. At the same time, the present authors recommend the term meta-diaphyseal fractures for zone 3. The term „Jones fracture“ should be dispensed with altogether. Nevertheless, it should be noted that the results and treatment recommendations presented here are only based on a few studies and need to be verified in larger studies in the future.

Conflict of interest statement
The authors declare that no conflicts of interest exists.

Manuscript received on 17 December 2020, revised version accepted on 4 May 2021.

Translated from the original German by Dr. Grahame Larkin, MD

Corresponding author
Prof. Dr. med. Hans Polzer
Klinik für Orthopädie und Unfallchirurgie,
Muskuloskelettales Universitätszentrum München (MUM),
Klinikum der Universität München, LMU München
Marchioninistr. 15, 81377 München, Germnay
hans.polzer@med.uni-muenchen.de

Cite this as:
Herterich V, Baumbach SF, Kaiser A, Böcker W, Polzer H: Fifth metatarsal fracture—a systematic review of the treatment of fractures of the base of the fifth metatarsal bone. Dtsch Arztebl Int 2021; 118: 587–94. DOI: 10.3238/arztebl.m2021.0231

Supplementary material

eMethods, eTables, eFigure:
www.aerzteblatt-international.de/m2021.0231

1.
Petrisor BA, Ekrol I, Court-Brown C: The epidemiology of metatarsal fractures. Foot Ankle Int 2006; 27: 172–4 CrossRef
2.
Jones R: I. Fracture of the base of the fifth metatarsal bone by indirect violence. Ann Surg 1902; 35: 697.
3.
Lawrence SJ, Botte MJ: Jones‘ fractures and related fractures of the proximal fifth metatarsal. Foot Ankle Int 1993; 14: 358–65 CrossRef
4.
Baumbach S, Prall W, Braunstein M, Böcker W, Polzer S, Polzer H: Frakturen der Metatarsale Fünf Basis–eine Neubetrachtung. Unfallchirurg 2018; 121: 723–9 CrossRef
5.
Moher D, Liberati A, Tetzlaff J, Altman D: Bevorzugte Report Items für systematische Übersichten und Meta-Analysen: Das PRISMA-Statement. DMW-Deutsche Medizinische Wochenschrift 2011; 136: e9-e15 CrossRef
6.
Popay J, Roberts H, Sowden A, et al.: Guidance on the conduct of narrative synthesis in systematic reviews. A product from the ESRC methods programme Version 2006; DOI:10.13140/2.1.1018.4643.
7.
Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J: Methodological index for nonrandomized studies (MINORS): development and validation of a new instrument. ANZ J Surg 2003; 73: 712–6 CrossRef
8.
Wright JG, Swiontkowski MF, Heckman JD: Introducing levels of evidence to the journal. J Bone Joint Surg Am 2003 ; 85: 1–3 CrossRef
9.
Akimau P, Cawthron K, Dakin W, Chadwick C, Blundell C, Davies M: Symptomatic treatment or cast immobilisation for avulsion fractures of the base of the fifth metatarsal: a prospective, randomised, single-blinded non-inferiority controlled trial. Bone Joint J 2016; 98: 806–11.
10.
Bayram S, Kendirci AŞ, Kıral D, et al.: Isokinetic strength comparison of tuberosity fractures of the proximal fifth metatarsal treated with elastic bandage vs cast. Foot Ankle Int 2020: 41: 674–82.
11.
Gray AC, Rooney BP, Ingram R: A prospective comparison of two treatment options for tuberosity fractures of the proximal fifth metatarsal. Foot (Edinb) 2008; 18: 156–8 CrossRef
12.
Nishikawa DRC, Aires Duarte F, Saito GH, et al.: Treatment of zone 1 fractures of the proximal fifth metatarsal with CAM-walker boot vs hard-soled shoes. Foot Ankle Int 2020; 41: 508–12 CrossRef
13.
Wiener BD, Linder JF, Giattini JF: Treatment of fractures of the fifth metatarsal: a prospective study. Foot Ankle Int 1997; 18: 267–9 CrossRef
14.
Wu GB, Li B, Yang YF: Comparative study of surgical and conservative treatments for fifth metatarsal base avulsion fractures (type I) in young adults or athletes. J Orthop Surg (Hong Kong) 2018; 26: 2309499017747128 CrossRef
15.
Lee TH, Lee JH, Chay SW, Jang KS, Kim HJ: Comparison of clinical and radiologic outcomes between non-operative and operative treatment in 5th metatarsal base fractures (Zone 1). Injury 2016; 47: 1789–93 CrossRef
16.
Kim JB, Song IS, Park BS, Ahn CH, Kim CU: Comparison of the outcomes between headless cannulated screw fixation and fixation using a locking compression distal ulna hook plate in fracture of fifth metatarsal base. J Foot Ankle Surg 2017; 56: 713–7 CrossRef
17.
Xie L, Guo X, Zhang SJ, Fang ZH: Locking compression plate distal ulna hook plate fixation versus intramedullary screw fixation for displaced avulsion fifth metatarsal base fractures: a comparative retrospective cohort study. BMC Musculoskelet Disord 2017; 18: 405 CrossRef
18.
Baumbach SF, Prall WC, Kramer M, Braunstein M, Böcker W, Polzer H: Functional treatment for fractures to the base of the 5th metatarsal-influence of fracture location and fracture characteristics. BMC Musculoskelet Disord 2017; 18: 1–7.
19.
Piyapittayanun P, Mutthakalin K, Arirachakaran A, Kongtharvonskul J: Comparative outcomes of foot cast and short leg cast in pseudo-Jones avulsion fracture: a single blinded randomized controlled trial. J Foot Ankle Res 2019; 12: 47 CrossRef
20.
Van Aaken J, Berli M, Noger M, Gambirasio R, Fritschy D: Symptomatic treatment of non-displaced avulsion and Jones fractures of the fifth metatarsal: a prospective study. Rev Med Suisse 2007; 3: 1792–4.
21.
Brocchini ETG, Zugnoni M, Artuso D: Le fratture della base del V metatarso. Minerva Ortop Traumatol 1992; 43: 621–6.
22.
Choi JH, Lee KT, Lee YK, Lee JY, Kim HR: Surgical results of zones I and II fifth metatarsal base fractures using hook plates. Orthopedics 2013; 36: e71-e4 CrossRef
23.
Mahajan V, Chung HW, Suh JS: Fractures of the proximal fifth metatarsal: percutaneous bicortical fixation. Clin Orthop Surg 2011; 3: 140–6 CrossRef
24.
Mologne TS, Lundeen JM, Clapper MF, O’Brien TJ: Early screw fixation versus casting in the treatment of acute Jones fractures. Am J Sports Med; 33: 970–5 CrossRef
25.
de Oliveira Massada MMT, Pereira MANPG, de Sousa RJG, Costa PG, da Rocha Massada JL: Intramedullary screw fixation of proximal fifth metatarsal fractures in athletes. Acta Ortop Bras 2012; 20: 262 CrossRef
26.
Schmoz S, Voelcker A, Burchhardt H, et al.: Konservatives Therapiekonzept bei Metatarsale-V-Basisfrakturen–Retrospektive und prospektive Analyse. Sportverletz Sportschaden 2014; 28: 211–7 CrossRef
27.
Nagar M, Forrest N, Maceachern CF: Utility of follow-up radiographs in conservatively managed acute fifth metatarsal fractures. Foot (Edinb) 2014; 24: 17–20 CrossRef
28.
Polzer H, Polzer S, Mutschler W, Prall WC: Acute fractures to the proximal fifth metatarsal bone: development of classification and treatment recommendations based on the current evidence. Injury 2012; 43: 1626–32 CrossRef
29.
Rettig AC, Shelbourne KD, Wilckens J: The surgical treatment of symptomatic nonunions of the proximal (metaphyseal) fifth metatarsal in athletes. Am J Sports Med 1992; 20: 50–4 CrossRef
30.
Baumbach SF, Urresti-Gundlach M, Böcker W, Vosseller JT, Polzer H: Results of functional treatment of epi-metaphyseal fractures of the base of the fifth metatarsal. Foot Ankle Int 2020: 41: 666–73 CrossRef
31.
Roddy E, Menz HB: Foot osteoarthritis: latest evidence and developments.Ther Adv Musculoskelet Dis 2018; 10: 91–103 CrossRef
32.
Ruta DJ, Parker D: Jones Fracture Management in Athletes. Orthop Clin North Am 2020; 51: 541–53 CrossRef
33.
Zwitser E, Breederveld R: Fractures of the fifth metatarsal; diagnosis and treatment. Injury 2010; 41: 555–62 CrossRef
34.
Wang Y, Gan X, Li K, Ma T, Zhang Y: Comparison of operative and non-operative management of fifth metatarsal base fracture: a meta-analysis. PLOS One 2020; 15: e0237151 CrossRef
35.
Rikken Q, Dahmen J, Hagemeijer N, Sierevelt I, Kerkhoffs G, DiGiovanni C: Adequate union rates for the treatment of acute proximal fifth metatarsal fractures. Knee Surg Sports Traumatol Arthrosc 2021; 29:1284–93 CrossRef
36.
Khan S, Axelrod D, Paul R, et al.: Acute fifth metatarsal tuberosity fractures: a systematic review of nonoperative treatment. PM R 2021; 13: 405–11 CrossRef
37.
Quill Jr GE: Fractures of the proximal fifth metatarsal. Orthop Clin North Am 1995; 26: 353–61 CrossRef
38.
Dameron Jr TB: Fractures and anatomical variations of the proximal portion of the fifth metatarsal. JBJS 1975; 57: 788–92 CrossRef
39.
Stewart I: Jones‘s fracture: fracture of base of fifth metatarsal. Clin Orthop 1960; 16: 190–8.
40.
Ding BC, Weatherall JM, Mroczek KJ, Sheskier SC: Fractures of the proximal fifth metatarsal: keeping up with the Joneses. Bull NYU Hosp Jt Dis 2012; 70: 49–55.
Department of Trauma Surgery, Munich University Hospital, LMU Munich: Dr. med. Viktoria Herterich, PD Dr. med. Sebastian Felix Baumbach, Antonia Kaiser, Prof. Dr. med. Wolfgang Böcker, Prof. Dr. med. Hans Polzer
Department of Orthopedic Surgery, Columbia University Medical Center, New York, USA: Prof. Dr. med. Hans Polzer
Retrospective analysis of the distribution of metatarsal fractures within the authors’ own patient population. Schematic diagram of the distribution of fractures of the metatarsals, within the 5th metatarsal bone (base, shaft, distal) and within the base of the 5th metatarsal
Figure 1
Retrospective analysis of the distribution of metatarsal fractures within the authors’ own patient population. Schematic diagram of the distribution of fractures of the metatarsals, within the 5th metatarsal bone (base, shaft, distal) and within the base of the 5th metatarsal
Inconsistent use of the term “Jones-fracture” in the various classifications and a new proposal for a treatment-based classification
Figure 2
Inconsistent use of the term “Jones-fracture” in the various classifications and a new proposal for a treatment-based classification
Flowchart of study selection using the PRISMA specifications
Figure 3
Flowchart of study selection using the PRISMA specifications
Overview of comparative studies with different treatment regimens for zone 1 fractures
Table 1
Overview of comparative studies with different treatment regimens for zone 1 fractures
Overview of comparative studies with different treatment regimens for zone 2 fractures (according to L & B) or the same treatment for zone 1 and zone 2 fractures
Table 2
Overview of comparative studies with different treatment regimens for zone 2 fractures (according to L & B) or the same treatment for zone 1 and zone 2 fractures
Overview of comparative studies with different treatment regimens for zone 2 fractures (according to L & B) or the same treatment for zone 1 and zone 2 fractures
Table 3
Overview of comparative studies with different treatment regimens for zone 2 fractures (according to L & B) or the same treatment for zone 1 and zone 2 fractures
Flowchart showing patient selection process from the clinical and radiological databases for the acquisition of the frequency of metatarsal fractures
eFigure
Flowchart showing patient selection process from the clinical and radiological databases for the acquisition of the frequency of metatarsal fractures
PICOS criteria
eTable 1
PICOS criteria
Overview of the included review articles
eTable 2
Overview of the included review articles
1.Petrisor BA, Ekrol I, Court-Brown C: The epidemiology of metatarsal fractures. Foot Ankle Int 2006; 27: 172–4 CrossRef
2.Jones R: I. Fracture of the base of the fifth metatarsal bone by indirect violence. Ann Surg 1902; 35: 697.
3.Lawrence SJ, Botte MJ: Jones‘ fractures and related fractures of the proximal fifth metatarsal. Foot Ankle Int 1993; 14: 358–65 CrossRef
4.Baumbach S, Prall W, Braunstein M, Böcker W, Polzer S, Polzer H: Frakturen der Metatarsale Fünf Basis–eine Neubetrachtung. Unfallchirurg 2018; 121: 723–9 CrossRef
5.Moher D, Liberati A, Tetzlaff J, Altman D: Bevorzugte Report Items für systematische Übersichten und Meta-Analysen: Das PRISMA-Statement. DMW-Deutsche Medizinische Wochenschrift 2011; 136: e9-e15 CrossRef
6.Popay J, Roberts H, Sowden A, et al.: Guidance on the conduct of narrative synthesis in systematic reviews. A product from the ESRC methods programme Version 2006; DOI:10.13140/2.1.1018.4643.
7.Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J: Methodological index for nonrandomized studies (MINORS): development and validation of a new instrument. ANZ J Surg 2003; 73: 712–6 CrossRef
8.Wright JG, Swiontkowski MF, Heckman JD: Introducing levels of evidence to the journal. J Bone Joint Surg Am 2003 ; 85: 1–3 CrossRef
9.Akimau P, Cawthron K, Dakin W, Chadwick C, Blundell C, Davies M: Symptomatic treatment or cast immobilisation for avulsion fractures of the base of the fifth metatarsal: a prospective, randomised, single-blinded non-inferiority controlled trial. Bone Joint J 2016; 98: 806–11.
10.Bayram S, Kendirci AŞ, Kıral D, et al.: Isokinetic strength comparison of tuberosity fractures of the proximal fifth metatarsal treated with elastic bandage vs cast. Foot Ankle Int 2020: 41: 674–82.
11.Gray AC, Rooney BP, Ingram R: A prospective comparison of two treatment options for tuberosity fractures of the proximal fifth metatarsal. Foot (Edinb) 2008; 18: 156–8 CrossRef
12.Nishikawa DRC, Aires Duarte F, Saito GH, et al.: Treatment of zone 1 fractures of the proximal fifth metatarsal with CAM-walker boot vs hard-soled shoes. Foot Ankle Int 2020; 41: 508–12 CrossRef
13.Wiener BD, Linder JF, Giattini JF: Treatment of fractures of the fifth metatarsal: a prospective study. Foot Ankle Int 1997; 18: 267–9 CrossRef
14.Wu GB, Li B, Yang YF: Comparative study of surgical and conservative treatments for fifth metatarsal base avulsion fractures (type I) in young adults or athletes. J Orthop Surg (Hong Kong) 2018; 26: 2309499017747128 CrossRef
15.Lee TH, Lee JH, Chay SW, Jang KS, Kim HJ: Comparison of clinical and radiologic outcomes between non-operative and operative treatment in 5th metatarsal base fractures (Zone 1). Injury 2016; 47: 1789–93 CrossRef
16.Kim JB, Song IS, Park BS, Ahn CH, Kim CU: Comparison of the outcomes between headless cannulated screw fixation and fixation using a locking compression distal ulna hook plate in fracture of fifth metatarsal base. J Foot Ankle Surg 2017; 56: 713–7 CrossRef
17.Xie L, Guo X, Zhang SJ, Fang ZH: Locking compression plate distal ulna hook plate fixation versus intramedullary screw fixation for displaced avulsion fifth metatarsal base fractures: a comparative retrospective cohort study. BMC Musculoskelet Disord 2017; 18: 405 CrossRef
18.Baumbach SF, Prall WC, Kramer M, Braunstein M, Böcker W, Polzer H: Functional treatment for fractures to the base of the 5th metatarsal-influence of fracture location and fracture characteristics. BMC Musculoskelet Disord 2017; 18: 1–7.
19.Piyapittayanun P, Mutthakalin K, Arirachakaran A, Kongtharvonskul J: Comparative outcomes of foot cast and short leg cast in pseudo-Jones avulsion fracture: a single blinded randomized controlled trial. J Foot Ankle Res 2019; 12: 47 CrossRef
20.Van Aaken J, Berli M, Noger M, Gambirasio R, Fritschy D: Symptomatic treatment of non-displaced avulsion and Jones fractures of the fifth metatarsal: a prospective study. Rev Med Suisse 2007; 3: 1792–4.
21.Brocchini ETG, Zugnoni M, Artuso D: Le fratture della base del V metatarso. Minerva Ortop Traumatol 1992; 43: 621–6.
22.Choi JH, Lee KT, Lee YK, Lee JY, Kim HR: Surgical results of zones I and II fifth metatarsal base fractures using hook plates. Orthopedics 2013; 36: e71-e4 CrossRef
23.Mahajan V, Chung HW, Suh JS: Fractures of the proximal fifth metatarsal: percutaneous bicortical fixation. Clin Orthop Surg 2011; 3: 140–6 CrossRef
24.Mologne TS, Lundeen JM, Clapper MF, O’Brien TJ: Early screw fixation versus casting in the treatment of acute Jones fractures. Am J Sports Med; 33: 970–5 CrossRef
25.de Oliveira Massada MMT, Pereira MANPG, de Sousa RJG, Costa PG, da Rocha Massada JL: Intramedullary screw fixation of proximal fifth metatarsal fractures in athletes. Acta Ortop Bras 2012; 20: 262 CrossRef
26.Schmoz S, Voelcker A, Burchhardt H, et al.: Konservatives Therapiekonzept bei Metatarsale-V-Basisfrakturen–Retrospektive und prospektive Analyse. Sportverletz Sportschaden 2014; 28: 211–7 CrossRef
27.Nagar M, Forrest N, Maceachern CF: Utility of follow-up radiographs in conservatively managed acute fifth metatarsal fractures. Foot (Edinb) 2014; 24: 17–20 CrossRef
28.Polzer H, Polzer S, Mutschler W, Prall WC: Acute fractures to the proximal fifth metatarsal bone: development of classification and treatment recommendations based on the current evidence. Injury 2012; 43: 1626–32 CrossRef
29.Rettig AC, Shelbourne KD, Wilckens J: The surgical treatment of symptomatic nonunions of the proximal (metaphyseal) fifth metatarsal in athletes. Am J Sports Med 1992; 20: 50–4 CrossRef
30.Baumbach SF, Urresti-Gundlach M, Böcker W, Vosseller JT, Polzer H: Results of functional treatment of epi-metaphyseal fractures of the base of the fifth metatarsal. Foot Ankle Int 2020: 41: 666–73 CrossRef
31.Roddy E, Menz HB: Foot osteoarthritis: latest evidence and developments.Ther Adv Musculoskelet Dis 2018; 10: 91–103 CrossRef
32.Ruta DJ, Parker D: Jones Fracture Management in Athletes. Orthop Clin North Am 2020; 51: 541–53 CrossRef
33.Zwitser E, Breederveld R: Fractures of the fifth metatarsal; diagnosis and treatment. Injury 2010; 41: 555–62 CrossRef
34.Wang Y, Gan X, Li K, Ma T, Zhang Y: Comparison of operative and non-operative management of fifth metatarsal base fracture: a meta-analysis. PLOS One 2020; 15: e0237151 CrossRef
35.Rikken Q, Dahmen J, Hagemeijer N, Sierevelt I, Kerkhoffs G, DiGiovanni C: Adequate union rates for the treatment of acute proximal fifth metatarsal fractures. Knee Surg Sports Traumatol Arthrosc 2021; 29:1284–93 CrossRef
36.Khan S, Axelrod D, Paul R, et al.: Acute fifth metatarsal tuberosity fractures: a systematic review of nonoperative treatment. PM R 2021; 13: 405–11 CrossRef
37.Quill Jr GE: Fractures of the proximal fifth metatarsal. Orthop Clin North Am 1995; 26: 353–61 CrossRef
38.Dameron Jr TB: Fractures and anatomical variations of the proximal portion of the fifth metatarsal. JBJS 1975; 57: 788–92 CrossRef
39.Stewart I: Jones‘s fracture: fracture of base of fifth metatarsal. Clin Orthop 1960; 16: 190–8.
40.Ding BC, Weatherall JM, Mroczek KJ, Sheskier SC: Fractures of the proximal fifth metatarsal: keeping up with the Joneses. Bull NYU Hosp Jt Dis 2012; 70: 49–55.