Implementing Effective SLO Monitoring in High-Volume Data Processing Systems

Authors

  • Swethasri Kavuri  Independent Researcher, USA
  • Suman Narne  Independent Researcher, USA

DOI:

https://doi.org//10.32628/CSEIT206479

Keywords:

Service Level Objectives (SLOs), High-Volume Data Processing, Distributed Systems, Monitoring, Metrics, Instrumentation, Statistical Analysis, Machine Learning, Scalability, Real-Time Monitoring

Abstract

In the development of high-volume data processing systems, effective monitoring of Service Level Objective (SLO) turns out to be a crucial topic. The needs and importance of critical operations require large-scale data processing. Large-scale data processing necessitates maintaining the performance, reliability, and efficiency of such organizations. This research work focuses on the foundational principles of SLO monitoring, architectural considerations for high-volume data processing systems, and advanced techniques for implementing and scaling SLO monitoring solutions. The research includes areas like metric selection, instrumentation techniques, data collection strategies, statistical analysis, and emerging trends in the field. It is a synthesis of current literature and industry practices that presents an organized guide for organizations that want to implement robust SLO monitoring in their data processing infrastructure.

References

  1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) (pp. 265-283).
  2. Alizadeh, M., Greenberg, A., Maltz, D. A., Padhye, J., Patel, P., Prabhakar, B., ... & Sridharan, M. (2010). Data center TCP (DCTCP). ACM SIGCOMM Computer Communication Review, 40(4), 63-74.
  3. Barroso, L. A., Clidaras, J., & Hölzle, U. (2013). The datacenter as a computer: An introduction to the design of warehouse-scale machines. Synthesis Lectures on Computer Architecture, 8(3), 1-154.
  4. Beyer, B., Jones, C., Petoff, J., & Murphy, N. R. (2016). Site Reliability Engineering: How Google Runs Production Systems. O'Reilly Media.
  5. Chen, L., Patel, A., Shen, H., & Zhou, Z. (2018). Profiling and understanding virtualization overhead in cloud. In Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques (pp. 31:1-31:14). ACM.
  6. Chiang, C. W., Bayrak, E., & Hsu, J. Y. J. (2018). Performance SLOs: Reference model and method. In 2018 IEEE International Conference on Services Computing (SCC) (pp. 45-52). IEEE.
  7. Dean, J., & Barroso, L. A. (2013). The tail at scale. Communications of the ACM, 56(2), 74-80.
  8. Delimitrou, C., & Kozyrakis, C. (2014). Quasar: Resource-efficient and QoS-aware cluster management. In Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems (pp. 127-144).
  9. Fonseca, R., Porter, G., Katz, R. H., Shenker, S., & Stoica, I. (2007). X-trace: A pervasive network tracing framework. In Proceedings of the 4th USENIX Conference on Networked Systems Design & Implementation (pp. 20-20).
  10. Garcia, J., Montesi, F., & Pereira, R. (2019). Towards distributed SLO monitoring in service-oriented architectures. Future Generation Computer Systems, 97, 879-890.
  11. Gulati, A., Shanmuganathan, G., Ahmad, I., Waldspurger, C., & Uysal, M. (2011). Pesto: Online storage performance management in virtualized datacenters. In Proceedings of the 2nd ACM Symposium on Cloud Computing (pp. 1-14).
  12. Höttges, S., Brunnert, A., & Krcmar, H. (2019). Fault tolerant service level objectives. In Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering (pp. 49-56).
  13. Bhavesh Kataria "Weather-Climate Forecasting System for Early Warning in Crop Protection, International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 5, pp.442-444, September-October-2015. Available at : https://doi.org/10.32628/ijsrset14111
  14. Johnson, C., Kogan, D., Levy, Y., Sahebjavaher, F., & Tarapore, P. (2020). SLO-aware adaptive resource management for cloud datacenters. IEEE Transactions on Services Computing, 13(3), 411-424.
  15. Kallio, J., Mehta, S., & Kantola, R. (2018). Analysis of big data technologies for monitoring cloud services. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 3444-3451). IEEE.
  16. Karanasos, K., Rao, S., Curino, C., Douglas, C., Chaliparambil, K., Fumarola, G. M., ... & Ramakrishnan, R. (2015). Mercury: Hybrid centralized and distributed scheduling in large shared clusters. In 2015 USENIX Annual Technical Conference (USENIX ATC 15) (pp. 485-497).
  17. Kumar, A., Sattar, A., & Saraph, V. (2018). Intelligent threshold determination for continuous queries in data stream management systems. In Proceedings of the 2018 IEEE International Conference on Big Data (pp. 2987-2996). IEEE.
  18. Leitner, P., & Cito, J. (2016). Patterns in the chaos—a study of performance variation and predictability in public IaaS clouds. ACM Transactions on Internet Technology (TOIT), 16(3), 1-23.
  19. Li, M., Zeng, L., Meng, S., Tan, J., Zhang, L., Butt, A. R., & Fuller, N. (2019). MRONLINE: MapReduce online performance tuning. In Proceedings of the 23rd International Symposium on High-performance Parallel and Distributed Computing (pp. 165-176). ACM.
  20. Liu, X., Iftikhar, N., & Xie, X. (2020). Survey of real-time processing systems for big data. In Proceedings of the 18th International Database Engineering & Applications Symposium (pp. 356-361). ACM.
  21. Lu, C., Ye, K., Xu, G., Xu, C. Z., & Bai, T. (2017). Imbalance in the cloud: An analysis on alibaba cluster trace. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 2884-2892). IEEE.
  22. Mace, J., Roelke, R., & Fonseca, R. (2015). Pivot tracing: Dynamic causal monitoring for distributed systems. In Proceedings of the 25th Symposium on Operating Systems Principles (pp. 378-393).
  23. Narayanan, D., Donnelly, A., & Rowstron, A. (2008). Write off-loading: Practical power management for enterprise storage. ACM Transactions on Storage (TOS), 4(3), 1-23.
  24. Ousterhout, K., Wendell, P., Zaharia, M., & Stoica, I. (2013). Sparrow: Distributed, low latency scheduling. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (pp. 69-84).
  25. Patel, A., Seyfi, A., Tew, Y., & Jaradat, S. (2019). Comparative study of distributed NoSQL datastores for IoT data management. Journal of Database Management, 30(2), 1-22.
  26. Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., & Kozuch, M. A. (2012). Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In Proceedings of the Third ACM Symposium on Cloud Computing (pp. 1-13).
  27. Schroeder, B., Lagisetty, R., & Merchant, A. (2019). Flash reliability in production: The expected and the unexpected. In 17th USENIX Conference on File and Storage Technologies (FAST 19) (pp. 67-80).
  28. Bhavesh Kataria "Use of Information and Communications Technologies (ICTs) in Crop Production” International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 3, pp.372-375, May-June-2015. Available at : https://doi.org/10.32628/ijsrset151386
  29. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., & Wilkes, J. (2013). Omega: Flexible, scalable schedulers for large compute clusters. In Proceedings of the 8th ACM European Conference on Computer Systems (pp. 351-364).
  30. Sharma, P., Chaufournier, L., Shenoy, P., & Tay, Y. C. (2019). Containers and virtual machines at scale: A comparative study. In Proceedings of the 17th International Conference on Middleware (pp. 1-13). ACM.
  31. B. Nemade, J. Nair, and B. Nemade, "Efficient GDP Growth Forecasting for India through a Novel Modified LSTM Approach," Communications on Applied Nonlinear Analysis, vol. 31, no. 2s, pp. 339-357, 2024.
  32. Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson, P., Plakal, M., Beaver, D., ... & Jaspan, C. (2010). Dapper, a large-scale distributed systems tracing infrastructure. Google Technical Report.
  33. Bhavesh Kataria, Jethva Harikrishna, "Performance Comparison of AODV/DSR On-Demand Routing Protocols for Ad Hoc Networks", International Journal of Scientific Research in Science and Technology, Print ISSN : 2395-6011, Online ISSN : 2395-602X, Volume 1, Issue 1, pp.20-30, March-April-2015. Available at : https://doi.org/10.32628/ijsrst15117
  34. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., & Wilkes, J. (2018). Large-scale cluster management at Google with Borg. In Proceedings of the European Conference on Computer Systems (pp. 18:1-18:17). ACM.
  35. Wang, C., Kavulya, S., Tan, J., Hu, L., Kutare, M., Kasick, M., ... & Narasimhan, P. (2018). Performance troubleshooting in data centers: An annotated bibliography. ACM SIGOPS Operating Systems Review, 52(1), 134-148.
  36. Wang, L., Xu, J., Zhao, M., Tu, Y., & Fortes, J. A. (2019). Fcmae: A fast clustering approach for massive amount of endpoints. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 4105-4110). IEEE.
  37. Zhang, Q., Liu, L., Pu, C., Dou, Q., Wu, L., & Zhou, W. (2018). A comparative study of containers and virtual machines in big data environment. In Proceedings of the 2018 IEEE 11th International Conference on Cloud Computing (pp. 178-185). IEEE.
  38. Zhang, Y., Meisner, D., Mars, J., & Tang, L. (2019). Treadmill: Attributing the source of tail latency through precise load testing and statistical inference. In Proceedings of the 46th International Symposium on Computer Architecture (pp. 456-468). ACM.
  39. Zhou, H., Li, M., Wang, Y., Liu, L., Hu, H., & Li, G. (2020). Adaptive load balancing for distributed key-value stores. IEEE Transactions on Parallel and Distributed Systems, 31(8), 1913-1926.
  40. Santhosh Palavesh. (2019). The Role of Open Innovation and Crowdsourcing in Generating New Business Ideas and Concepts. International Journal for Research Publication and Seminar, 10(4), 137–147. https://doi.org/10.36676/jrps.v10.i4.1456
  41. Vijaya Venkata Sri Rama Bhaskar, Akhil Mittal, Santosh Palavesh, Krishnateja Shiva, Pradeep Etikani. (2020). Regulating AI in Fintech: Balancing Innovation with Consumer Protection. European Economic Letters (EEL), 10(1). https://doi.org/10.52783/eel.v10i1.1810
  42. Challa, S. S. S. (2020). Assessing the regulatory implications of personalized medicine and the use of biomarkers in drug development and approval. European Chemical Bulletin, 9(4), 134-146.
  43. D.O.I10.53555/ecb.v9:i4.17671
  44. Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2019). Investigating the use of natural language processing (NLP) techniques in automating the extraction of regulatory requirements from unstructured data sources. Annals of Pharma Research, 7(5), 380-387.
  45. B. Nemade, S. S. Alegavi, N. B. Badhe, and A. Desai, “Enhancing information security in multimedia streams through logic learning machine assisted moth-flame optimization,” ICTACT Journal of Communication Technology, vol. 14, no. 3, 2023.
  46. Challa, S. S. S., Chawda, A. D., Benke, A. P., & Tilala, M. (2020). Evaluating the use of machine learning algorithms in predicting drug-drug interactions and adverse events during the drug development process. NeuroQuantology, 18(12), 176-186. https://doi.org/10.48047/nq.2020.18.12.NQ20252
  47. Challa, S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2019). Investigating the use of natural language processing (NLP) techniques in automating the extraction of regulatory requirements from unstructured data sources. Annals of PharmaResearch, 7(5), 380-387.
  48. Bhavesh Kataria, "XML Enabling Homogeneous and Platform Independent Data Exchange in Agricultural Information Systems, International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 2, pp.129-133, March-April-2015. Available at : https://doi.org/10.32628/ijsrset152239
  49. Dr. Saloni Sharma, & Ritesh Chaturvedi. (2017). Blockchain Technology in Healthcare Billing: Enhancing Transparency and Security. International Journal for Research Publication and Seminar, 10(2), 106–117. Retrieved from https://jrps.shodhsagar.com/index.php/j/article/view/1475
  50. Saloni Sharma. (2020). AI-Driven Predictive Modelling for Early Disease Detection and Prevention. International Journal on Recent and Innovation Trends in Computing and Communication, 8(12), 27–36. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/11046
  51. Fadnavis, N. S., Patil, G. B., Padyana, U. K., Rai, H. P., & Ogeti, P. (2020). Machine learning applications in climate modeling and weather forecasting. NeuroQuantology, 18(6), 135-145. https://doi.org/10.48047/nq.2020.18.6.NQ20194
  52. Bhavesh Kataria, "The Challenges of Utilizing Information Communication Technologies (ICTs) in Agriculture Extension, International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 1, pp.380-384, January-February-2015. Available at : https://doi.org/10.32628/ijsrset1511103
  53. Bhaskar, V. V. S. R., Etikani, P., Shiva, K., Choppadandi, A., & Dave, A. (2019). Building explainable AI systems with federated learning on the cloud. Journal of Cloud Computing and Artificial Intelligence, 16(1), 1–14.
  54. Vijaya Venkata Sri Rama Bhaskar, Akhil Mittal, Santosh Palavesh, Krishnateja Shiva, Pradeep Etikani. (2020). Regulating AI in Fintech: Balancing Innovation with Consumer Protection. European Economic Letters (EEL), 10(1). https://doi.org/10.52783/eel.v10i1.1810
  55. Dave, A., Etikani, P., Bhaskar, V. V. S. R., & Shiva, K. (2020). Biometric authentication for secure mobile payments. Journal of Mobile Technology and Security, 41(3), 245-259.
  56. Prasad, N., Narukulla, N., Hajari, V. R., Paripati, L., & Shah, J. (2020). AI-driven data governance framework for cloud-based data analytics. Volume 17, (2), 1551-1561.
  57. Bhavesh Kataria, "Role of Information Technology in Agriculture : A Review, International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 1, pp.01-03, 2014. Available at : https://doi.org/10.32628/ijsrset141115
  58. Big Data Analytics using Machine Learning Techniques on Cloud Platforms. (2019). International Journal of Business Management and Visuals, ISSN: 3006-2705, 2(2), 54-58. https://ijbmv.com/index.php/home/article/view/76
  59. Secure Federated Learning Framework for Distributed Ai Model Training in Cloud Environments. (2019). International Journal of Open Publication and Exploration, ISSN: 3006-2853, 7(1), 31-39. https://ijope.com/index.php/home/article/view/145
  60. Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2019). Investigating the use of natural language processing (NLP) techniques in automating the extraction of regulatory requirements from unstructured data sources. Annals of Pharma Research, 7(5),
  61. Tilala, M., & Chawda, A. D. (2020). Evaluation of compliance requirements for annual reports in pharmaceutical industries. NeuroQuantology, 18(11), 27.
  62. Ghavate, N. (2018). An Computer Adaptive Testing Using Rule Based. Asian Journal For Convergence In Technology (AJCT) ISSN -2350-1146, 4(I). Retrieved from http://asianssr.org/index.php/ajct/article/view/443
  63. Shanbhag, R. R., Dasi, U., Singla, N., Balasubramanian, R., & Benadikar, S. (2020). Overview of cloud computing in the process control industry. International Journal of Computer Science and Mobile Computing, 9(10), 121-146. https://www.ijcsmc.com
  64. Tripathi, A. (2020). AWS serverless messaging using SQS. IJIRAE: International Journal of Innovative Research in Advanced Engineering, 7(11), 391-393.
  65. B. C. Surve, B. Nemade, and V. Kaul, "Nano-electronic devices with machine learning capabilities," ICTACT Journal on Microelectronics, vol. 9, no. 3, pp. 1601-1606, Oct. 2023, doi: 10.21917/ijme.2023.0277.
  66. Tripathi, A. (2019). Serverless architecture patterns: Deep dive into event-driven, microservices, and serverless APIs. International Journal of Creative Research Thoughts (IJCRT), 7(3), 234-239. Retrieved from http://www.ijcrt.org
  67. Thakkar, D. (2020, December). Reimagining curriculum delivery for personalized learning experiences. International Journal of Education, 2(2), 7. Retrieved from https://iaeme.com/Home/article_id/IJE_02_02_003
  68. Kanchetti, D., Munirathnam, R., & Thakkar, D. (2019). Innovations in workers compensation: XML shredding for external data integration. Journal of Contemporary Scientific Research, 3(8). ISSN (Online) 2209-0142.
  69. Bhavesh Kataria, "Variant of RSA-Multi prime RSA, International Journal of Scientific Research in Science, Engineering and Technology, Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 1, Issue 1, pp.09-11, 2014. Available at https://doi.org/10.32628/ijsrset14113
  70. Aravind Reddy Nayani, Alok Gupta, Prassanna Selvaraj, Ravi Kumar Singh, & Harsh Vaidya. (2019). Search and Recommendation Procedure with the Help of Artificial Intelligence. International Journal for Research Publication and Seminar, 10(4), 148–166. https://doi.org/10.36676/jrps.v10.i4.1503
  71. Vaidya, H., Nayani, A. R., Gupta, A., Selvaraj, P., & Singh, R. K. (2020). Effectiveness and future trends of cloud computing platforms. Tuijin Jishu/Journal of Propulsion Technology, 41(3). Retrieved from https://www.journal-propulsiontech.com
  72. Rinkesh Gajera , "Leveraging Procore for Improved Collaboration and Communication in Multi-Stakeholder Construction Projects", International Journal of Scientific Research in Civil Engineering (IJSRCE), ISSN : 2456-6667, Volume 3, Issue 3, pp.47-51, May-June.2019
  73. Gudimetla, S. R., et al. (2015). Mastering Azure AD: Advanced techniques for enterprise identity management. Neuroquantology, 13(1), 158-163. https://doi.org/10.48047/nq.2015.13.1.792
  74. V. Kulkarni, B. Nemade, S. Patel, K. Patel, and S. Velpula, "A short report on ADHD detection using convolutional neural networks," Frontiers in Psychiatry, vol. 15, p. 1426155, Sept. 2024, doi: 10.3389/fpsyt.2024.1426155.
  75. B. Nemade and D. Shah, “An IoT-Based Efficient Water Quality Prediction System for Aquaponics Farming,” in Computational Intelligence: Select Proceedings of InCITe 2022, Singapore: Springer Nature Singapore, 2023, pp. 311-323. [Online]. Available: https://doi.org/10.1007/978-981-19-7346-8_27.
  76. Gudimetla, S. R., & et al. (2015). Beyond the barrier: Advanced strategies for firewall implementation and management. NeuroQuantology, 13(4), 558-565. https://doi.org/10.48047/nq.2015.13.4.876

Downloads

Published

2020-03-01

Issue

Section

Research Articles

How to Cite

[1]
Swethasri Kavuri, Suman Narne, " Implementing Effective SLO Monitoring in High-Volume Data Processing Systems, IInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 6, Issue 2, pp.558-578, March-April-2020. Available at doi : https://doi.org/10.32628/CSEIT206479