InSAR Detection and Field Evidence for Thermokarst after a Tundra Wildfire, Using ALOS-PALSAR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anaktuvuk River Fire (ARF)
2.2. InSAR Processing
2.3. Calibration of Seasonal Surface Movement and Selection of Target Area
2.4. Optical Images and GIS Analysis for the Target Area
2.5. In Situ Measurements of Surface Micro-Relief and Estimation of Subsidence Volume
3. Results
3.1. InSAR and GIS Analysis
3.2. Thermokarst Evidence from Optical Imagery and Ground Truth Survey
4. Discussion
4.1. Spatial Resolution and Variation of Captured Thermokarst Subsidence
4.2. Effects of Surface Changes due to Wildfire on InSAR Signal
4.3. Uncertainly in Our InSAR Subsidence Detection due to Active Layer Change
4.4. Limitations and Implications of this Study
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ALOS | Advanced Land Observing Satellite |
PALSAR | The Phased Array type L-band Synthetic Aperture Radar |
InSAR | Interferometric Synthetic Aperture Radar |
ARF | The Anaktuvuk River Fire |
DEM | Digital Elevation Model |
ALOS-PRISM | The Panchromatic Remote-sensing Instrument for Stereo Mapping on ALOS |
NIR | Near Infrared |
DTM | Digital Terrain Model |
LiDAR | Laser Imaging Detection and Ranging |
References
- Haeberli, W.; Burn, C.R. Natural Hazards in Forests: Glacier and Permafrost Effects as Related to Climate Change; CABI Publishing: Wallingford, UK; New York, NY, USA, 2002. [Google Scholar]
- Czudek, T.; Demek, J. Thermokarst in Siberia and its influence on the development of lowland relief. Quat. Res. 1970, 1, 103–120. [Google Scholar] [CrossRef]
- Kanevskiy, M.; Shur, Y.; Fortier, D.; Jorgenson, M.T.; Stephani, E. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure. Quat. Res. 2011, 75, 584–596. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Bockheim, J.; Canadell, J.G.; Euskirchen, E.; Field, C.B.; Goryachkin, S.V.; Hagemann, S.; Kuhry, P.; Lafleur, P.M.; Lee, H.; et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 2008, 58, 701–714. [Google Scholar]
- Francis, J.A.; White, D.M.; Cassano, J.J.; Gutowski, W.J., Jr.; Hinzman, L.D.; Holland, M.M.; Steele, M.A.; Voeroesmarty, C.J. An Arctic hydrologic system in transition: Feedbacks and impacts on terrestrial, marine, and human life. J. Geophys. Res. Biogeosci. 2009, 114. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Romanovsky, V.; Harden, J.; Shur, Y.; O’Donnell, J.; Schuur, E.A.G.; Kanevskiy, M.; Marchenko, S. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 2010, 40, 1219–1236. [Google Scholar] [CrossRef]
- Rowland, J.C.; Jones, C.E.; Altmann, G.; Bryan, R.; Crosby, B.T.; Hinzman, L.D.; Kane, D.L.; Lawrence, D.M.; Mancino, A.; Marsh, P.; et al. Arctic landscapes in transition: Responses to thawing permafrost. Eos Trans. AGU 2010, 91, 229–230. [Google Scholar]
- Grosse, G.; Romanovsky, V.; Jorgenson, T.; Anthony, K.W.; Brown, J.; Overduin, P.P. Vulnerability and feedbacks of permafrost to climate change. Eos Trans. AGU 2011, 92, 73–74. [Google Scholar] [CrossRef]
- Strauss, J.; Schirrmeister, L.; Wetterich, S.; Borchers, A.; Davydov, S.P. Grain-size properties and organic-carbon stock of yedoma ice complex permafrost from the Kolyma lowland, northeastern Siberia. Glob. Biogeochem. Cycles 2012, 26, GB004104. [Google Scholar] [CrossRef]
- Zimov, S.A.; Voropaev, Y.V.; Semiletov, I.P.; Davidov, S.P.; Prosiannikov, S.F.; Chapin, F.S., III; Chapin, M.C.; Trumbore, S.; Tyler, S. North siberian lakes: A methane source fueled by Pleistocene. Science 1997, 277, 800–802. [Google Scholar]
- Walter, K.M.; Zimov, S.A.; Chanton, J.P.; Verbyla, D.; Chapin, F.S., III. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 2006, 443, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Schuur, E.A.G.; McGuire, A.D.; Schadel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [PubMed]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.; Rossi, M.; Adragna, F. Radar interferometric mapping of deformation in the year after the landers earthquake. Nature 1994, 369, 227–230. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, T.; Wahr, J. InSAR measurements of surface deformation over permafrost on the North Slope of Alaska. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef]
- Short, N.; Brisco, B.; Couture, N.; Pollard, W.; Murnaghan, K.; Budkewitsch, P. A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada. Remote Sens. Environ. 2011, 115, 3491–3506. [Google Scholar] [CrossRef]
- Liu, L.; Schaefer, K.; Gusmeroli, A.; Grosse, G.; Jones, B.M.; Zhang, T.; Parsekian, A.D.; Zebker, H.A. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska. Cryosphere 2014, 8, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Jafarov, E.E.; Schaefer, K.M.; Jones, B.M.; Zebker, H.A.; Williams, C.A.; Rogan, J.; Zhang, T. InSAR detects increase in surface subsidence caused by an arctic tundra fire. Geophys. Res. Lett. 2014, 41, 3906–3913. [Google Scholar] [CrossRef]
- Heginbottom, J.A.; Brown, J.; Melnikov, E.S.; Ferrians, O.J., Jr. Circumarctic map of permafrost and ground ice conditions. In Proceedings of the Sixth International Conference on Permafrost, Beijing, China, 5–9 July 1993; pp. 1132–1136.
- Mack, M.C.; Bret-Harte, M.S.; Hollingsworth, T.N.; Jandt, R.R.; Schuur, E.A.G.; Shaver, G.R.; Verbyla, D.L. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 2011, 475, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.M.; Grosse, G.; Arp, C.D.; Jones, M.C.; Anthony, K.M.W.; Romanovsky, V.E. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef]
- Rocha, A.V.; Shaver, G.R. Burn severity influences postfire CO2 exchange in Arctic tundra. Ecol. Appl. 2011, 21, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.V.; Shaver, G.R. Postfire energy exchange in Arctic tundra: The importance and climatic implications of burn severity. Glob. Chang. Biol. 2011, 17, 2831–2841. [Google Scholar] [CrossRef]
- Bret-Harte, M.S.; Mack, M.C.; Shaver, G.R.; Huebner, D.C.; Johnston, M.; Mojica, C.A.; Pizano, C.; Reiskind, J.A. The response of arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368. [Google Scholar] [CrossRef] [PubMed]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Meyer, F.J.; Nicoll, J.B. Prediction, detection, and correction of Faraday rotation in full-polarimetric L-band SAR data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3076–3086. [Google Scholar] [CrossRef]
- Liu, L.; Schaefer, K.M.; Chen, A.C.; Gusmeroli, A.; Zebker, H.A.; Zhang, T. Remote sensing measurements of thermokarst subsidence using InSAR. J. Geophys. Res. Earth Surf. 2015, 120, 1935–1948. [Google Scholar] [CrossRef]
- Jones, B.M.; Breen, A.L.; Gaglioti, B.V.; Mann, D.H.; Rocha, A.V.; Grosse, G.; Arp, C.D.; Kunz, M.L.; Walker, D.A. Identification of unrecognized tundra fire events on the North Slope of Alaska. J. Geophys. Res. Biogeosci. 2013, 118, 1334–1344. [Google Scholar] [CrossRef]
- Jones, B.M.; Grosse, G.; Arp, C.D.; Miller, E.; Liu, L.; Hayes, D.J.; Larsen, C.F. Recent arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, H.M. The Periglacial Environment, 3rd ed.; Longman: Singapore, 2007. [Google Scholar]
- Dostovalov, B.N.; Popov, A.I. Polygonal systems of ice-wedge and conditions of their development. In Proceedings of the First International Conference on Permafrost, Lafayette, IN, USA; 1963; pp. 102–105. [Google Scholar]
- Shiklomanov, N.I.; Streletskiy, D.A.; Little, J.D.; Nelson, F.E. Isotropic thaw subsidence in undisturbed permafrost landscapes. Geophys. Res. Lett. 2013, 40, 6356–6361. [Google Scholar] [CrossRef]
- Nolan, M.; Fatland, D.R. Penetration depth as a DInSAR observable and proxy for soil moisture. IEEE Trans. Geosci. Remote Sens. 2003, 41, 532–537. [Google Scholar] [CrossRef]
- Iwahana, G.; Takano, S.; Petrov, R.E.; Tei, S.; Shingubara, R.; Maximov, T.C.; Fedorov, A.N.; Desyatkin, A.R.; Nikolaev, A.N.; Desyatkin, R.V.; et al. Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Polar Sci. 2014, 8, 96–113. [Google Scholar]
- Liljedahl, A.; Hinzman, L.; Busey, R.; Yoshikawa, K. Physical short-term changes after a tussock tundra fire, Seward Peninsula, Alaska. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Dash, J.G.; Rempel, A.W.; Wettlaufer, J.S. The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 2006, 78, 695–741. [Google Scholar] [CrossRef]
- Taber, S. The mechanics of frost heaving. J. Geol. 1930, 38, 303–317. [Google Scholar] [CrossRef]
- Cheng, G. The mechanism of repeated-segregation for the formation of thick layered ground ice. Cold Reg. Sci. Technol. 1983, 8, 57–66. [Google Scholar]
- Osterkamp, T.E.; Romanovsky, V.E. Freezing of the active layer on the coastal plain of the Alaskan Arctic. Permafr. Periglac. Process. 1997, 8, 23–44. [Google Scholar] [CrossRef]
- Walker, D.A.; Epstein, H.E.; Romanovsky, V.E.; Ping, C.L.; Michaelson, G.J.; Daanen, R.P.; Shur, Y.; Peterson, R.A.; Krantz, W.B.; Raynolds, M.K.; et al. Arctic patterned-ground ecosystems: A synthesis of field studies and models along a North American Arctic transect. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; Volume 2. [Google Scholar]
Pair ID | Master Date | Slave Date | Bperp (m) | Time Lag (days) | Subsidence Error Due to Inaccurate DEM (cm) | Ionospheric Effects |
---|---|---|---|---|---|---|
Pre-1 | 2006/09/03 | 2006/06/03 | −1350 | 92 | 1.0 | Not significant |
Pre-2 | 2007/09/06 | 2007/07/22 | −498 | 46 | 0.4 | Obvious trend in NE-SW direction |
Post-1 | 2009/07/27 | 2008/07/24 | 922 | 368 (125*) | 0.7 | Not significant |
Post-2 | 2009/09/11 | 2009/07/27 | −626 | 46 | 0.5 | Not significant |
Post-3 | 2010/09/14 | 2010/07/30 | −398 | 46 | 0.3 | Obvious trend in N-S direction |
Pair ID (Master_Slave) | Land Cover Unit | Area (ha) | Subsidence Relative to Unburned Inside (cm) | ||
---|---|---|---|---|---|
Mean | Std | 2Ste | |||
Pre-1 (060903_060603) | Unburned outside | 6.9 | 0.9 | 2.9 | 0.01 |
Unburned inside | 1.6 | 0.0 | 2.6 | 0.02 | |
Unburned fragmented | 1.5 | −0.2 | 3.0 | 0.02 | |
Burned | 13.6 | 0.5 | 2.6 | 0.01 | |
Pre-2 (070906_070722) | Unburned outside | 7.3 | −1.6 | 0.7 | 0.00 |
Unburned inside | 1.6 | 0.0 | 1.2 | 0.01 | |
Unburned fragmented | 1.6 | −0.2 | 1.4 | 0.01 | |
Burned | 13.8 | 0.2 | 1.4 | 0.00 | |
Post-1 (090727_080724) | Unburned outside | 6.8 | 0.7 | 2.8 | 0.01 |
Unburned inside | 1.5 | 0.0 | 3.1 | 0.02 | |
Unburned fragmented | 1.6 | −4.4 | 2.7 | 0.02 | |
Burned | 13.6 | −6.2 | 2.7 | 0.01 | |
Post-2 (090911_090727) | Unburned outside | 7.2 | 0.2 | 2.3 | 0.01 |
Unburned inside | 1.6 | 0.0 | 2.3 | 0.02 | |
Unburned fragmented | 1.6 | −1.2 | 2.5 | 0.02 | |
Burned | 13.8 | −1.9 | 2.1 | 0.01 | |
Post-3 (100914_100730) | Unburned outside | 6.3 | −1.2 | 3.0 | 0.01 |
Unburned inside | 1.3 | 0.0 | 3.5 | 0.02 | |
Unburned fragmented | 1.5 | −1.6 | 3.2 | 0.02 | |
Burned | 13.2 | −1.8 | 2.9 | 0.01 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwahana, G.; Uchida, M.; Liu, L.; Gong, W.; Meyer, F.J.; Guritz, R.; Yamanokuchi, T.; Hinzman, L. InSAR Detection and Field Evidence for Thermokarst after a Tundra Wildfire, Using ALOS-PALSAR. Remote Sens. 2016, 8, 218. https://doi.org/10.3390/rs8030218
Iwahana G, Uchida M, Liu L, Gong W, Meyer FJ, Guritz R, Yamanokuchi T, Hinzman L. InSAR Detection and Field Evidence for Thermokarst after a Tundra Wildfire, Using ALOS-PALSAR. Remote Sensing. 2016; 8(3):218. https://doi.org/10.3390/rs8030218
Chicago/Turabian StyleIwahana, Go, Masao Uchida, Lin Liu, Wenyu Gong, Franz J. Meyer, Richard Guritz, Tsutomu Yamanokuchi, and Larry Hinzman. 2016. "InSAR Detection and Field Evidence for Thermokarst after a Tundra Wildfire, Using ALOS-PALSAR" Remote Sensing 8, no. 3: 218. https://doi.org/10.3390/rs8030218