Estimating Energy Dissipation Rate from Breaking Waves Using Polarimetric SAR Images
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. SAR Data Set
2.3. Ancillary Information
2.4. Wave Model
3. Model Approach
3.1. Energy Dissipation Rate
3.2. Wave Breaking Contribution in
- (a)
- (b)
3.3. Relationship between and Environmental and Imaging Parameters
4. Results
4.1. Influence of the Estimation on the Non-Polarized Contribution
4.2. Estimation of Using the Non-Polarized Contribution
5. Discussion
5.1. Sensitivity of in Relation to Determination
5.2. Comparison of with Wave Model Outputs
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AOI | Angle of incidence |
BPM | Boundary perturbation model |
CSA | Canadian Space Agency |
dB | Decibel |
ECMWF | European Center for Medium-Range Weather Forecasts |
HH | horizontal transmit-horizontal receive |
MDA | MacDonald Dettwiler and Associates |
MSS | Mean square slope |
NESZ | Noise-equivalent sigma zero |
NP | Non-polarized |
NRCS | Normalized radar cross section |
NCEP | National Centers for Environmental Prediction |
NDBC | National Data Buoy Center |
NOAA | National Oceanic and Atmospheric Administration |
PD | Polarized difference |
PNBOIA | National Buoy Program of the Brazilian Navy |
RS-2 | RadarSAT-2 |
ROI | Region of interest |
SAR | Synthetic aperture radar |
SLC | Single-look complex |
SST | Sea surface temperature |
TSM | Two-scale model |
VV | Vertical transmit-vertical receive |
WW3 | WAVEWATCH III |
Appendix A
References
- Melville, W.K. The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech. 1996, 28, 279–321. [Google Scholar] [CrossRef]
- Zappa, C.J.; McGillis, W.R.; Raymond, P.A.; Edson, J.B.; Hintsa, E.J.; Zemmelink, H.J.; Dacey, J.W.H.; Ho, D.T. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T.G.; Christensen, K.H.; Saltzman, E.S.; Miller, S.D.; Ward, B. Parameterizing air-sea gas transfer velocity with dissipation. J. Geophys. Res. 2017, 122, 3041–3056. [Google Scholar] [CrossRef] [Green Version]
- Craig, P.D.; Banner, M.L. Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr. 1994, 24, 2546–2559. [Google Scholar] [CrossRef] [Green Version]
- Terray, E.; Donelan, M.; Agrawal, Y.; Drennan, W.; Kahma, K.; Williams, A.; Hwang, P.; Kitaigorodskii, S. Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr. 1996, 26, 792–807. [Google Scholar] [CrossRef] [Green Version]
- Holding, T.; Ashton, I.G.; Shutler, J.D.; Land, P.E.; Nightingale, P.D.; Rees, A.P.; Brown, I.; Piolle, J.F.; Kock, A.; Bange, H.W.; et al. The FluxEngine air–sea gas flux toolbox: Simplified interface and extensions for in situ analyses and multiple sparingly soluble gases. Ocean Sci. 2019, 15, 1707–1728. [Google Scholar] [CrossRef] [Green Version]
- Terrill, E.J.; Melville, W.K.; Stramski, D. Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean. J. Geophys. Res. 2001, 106, 16815–16823. [Google Scholar] [CrossRef] [Green Version]
- Melville, W.K.; Matusov, P. Distribution of breaking waves at the ocean surface. Nature 2002, 417, 58–63. [Google Scholar] [CrossRef]
- Anguelova, M.D.; Webster, F. Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Toba, Y. Quantitative expression of the breaking of wind waves on the sea surface. Rec. Oceanogr. Works Jpn. 1973, 12, 1–11. [Google Scholar]
- Wu, J. Variations of whitecap coverage with wind stress and water temperature. J. Phys. Oceanogr. 1988, 18, 1448–1453. [Google Scholar] [CrossRef] [Green Version]
- Hwang, P.A.; Sletten, M.A. Energy dissipation of wind-generated waves and whitecap coverage. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Hasselmann, K. On the spectral dissipation of ocean waves due to white capping. Bound.-Layer Meteorol. 1974, 6, 107–127. [Google Scholar] [CrossRef]
- Phillips, O.M. Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 1985, 156, 505–531. [Google Scholar] [CrossRef]
- Tolman, H.; Chalikov, D. Source terms in a third-generation wind wave model. J. Phys. Oceanogr. 1996, 26, 2497–2518. [Google Scholar] [CrossRef] [Green Version]
- Ardhuin, F.; Rogers, E.; Babanin, A.V.; Filipot, J.F.; Magne, R.; Roland, A.; van der Westhuysen, A.; Queffeulou, P.; Lefevre, J.M.; Aouf, L.; et al. Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef] [Green Version]
- Felizardo, F.C.; Melville, K.W. Correlations between ambient noise and the ocean surface wave field. J. Phys. Oceanogr. 1995, 25, 513–532. [Google Scholar] [CrossRef] [Green Version]
- Hanson, J.L.; Phillips, O.M. Wind sea growth and dissipation in the open ocean. J. Phys. Oceanogr. 1999, 29, 1633–1648. [Google Scholar] [CrossRef]
- Banner, M.L.; Morison, R.P. On the upper ocean turbulent dissipation rate due to microscale breakers and small whitecaps. Ocean Model. 2018, 126, 63–76. [Google Scholar] [CrossRef]
- Guan, C.; Hu, W.; Sun, J.; Li, R. The whitecap coverage model from breaking dissipation parametrizations of wind waves. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Banner, M.L.; Babanin, A.V.; Young, I.R. Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr. 2000, 30, 3145–3160. [Google Scholar] [CrossRef]
- Manasseh, R.; Babanin, A.V.; Forbes, C.; Rickards, K.; Bobevski, I.; Ooi, A. Passive acoustic determination of wave-breaking events and their severity across the spectrum. J. Atmos. Ocean. Technol. 2006, 23, 599–618. [Google Scholar] [CrossRef]
- Jessup, A.T.; Zappa, C.; Loewen, M.; Hesany, V. Infrared remote sensing of breaking waves. Nature 1997, 385, 52–55. [Google Scholar] [CrossRef]
- Sutherland, P.; Melville, W.K. Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr. 2015, 45, 943–965. [Google Scholar] [CrossRef]
- Phillips, O.M.; Posner, F.L.; Hansen, J.P. High range resolution radar measurements of the speed distribution of breaking events in wind-generated ocean waves: Surface impulse and wave energy dissipation rates. J. Phys. Oceanogr. 2001, 31, 450–460. [Google Scholar] [CrossRef]
- Hwang, P.A.; Sletten, M.A.; Toporkov, J.V. Breaking wave contribution to low grazing angle radar backscatter from the ocean surface. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Kudryavtsev, V.N.; Hauser, G.; Caudal, G.; Chapron, B. A semiempirical model of the normalized radar cross-section of the sea surface 1. Background model. J. Geophys. Res. 2003, 108, 8054–8077. [Google Scholar] [CrossRef] [Green Version]
- Hwang, P.A.; Zhang, B.; Perrie, W. Depolarized radar return for breaking wave measurement and hurricane wind retrieval. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Kudryavtsev, V.N.; Chapron, B.; Myasoedov, A.G.; Collard, F.; Johannessen, J.A. On dual co-polarized SAR measurements of the ocean surface. IEEE Geosci. Remote Sens. Lett. 2013, 10, 761–765. [Google Scholar] [CrossRef]
- Monahan, E.C.; O’Muircheartaigh, I.G. Whitecaps and the passive remote sensing of the ocean surface. Int. J. Remote Sens. 1986, 7, 627–642. [Google Scholar] [CrossRef]
- Kudryavtsev, V.; Kozlov, I.; Chapron, B.; Johannessen, J.A. Quad-polarization SAR features of ocean currents. J. Geophys. Res. 2014, 119, 6046–6065. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, V.N.; Fan, S.; Zhang, B.; Mouche, A.A.; Chapron, B. On quad-polarized SAR measurements of the ocean surface. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8362–8370. [Google Scholar] [CrossRef]
- Macdonald, Dettwiler and Associates Ltd. RADARSAT-2 Product Format Definition; Technical Report RN-SP-52-1238; MacDonald, Dettwiler and Associates Ltd.: Richmond, BC, Canada, 2018. [Google Scholar]
- Hajnsek, I.; Pottier, E.; Cloude, S.R. Inversion of surface parameters from polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 2003, 41, 727–744. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Shoji, H.; András, H.; Joaquín, M.-S.; Julien, N.; Carole, P.; Raluca, R.; Dinand, S.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1994; 532p. [Google Scholar]
- The WAVEWATCH III® Development Group. User Manual and System Documentation of WAVEWATCH III® Version 5.16; Tech. Note 329; NOAA/NWS/NCEP/MMAB: College Park, MD, USA, 2016. [Google Scholar]
- Phillips, O.M. Radar returns from the sea surface—Bragg scattering and breaking waves. J. Phys. Oceanogr. 1988, 18, 1065–1074. [Google Scholar] [CrossRef]
- Mouche, A.A.; Hauser, D.; Kudryavtsev, V. Radar scattering of the ocean surface and sea-roughness properties: A combined analysis from dual-polarizations airborne radar observations and models in C band. J. Geophys. Res. 2006, 111, 1–18. [Google Scholar] [CrossRef]
- Hwang, P.A.; Plant, W.J. An analysis of the effects of swell and surface roughness spectra on microwave backscatter from the ocean. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Hwang, P.A.; Fois, F. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering. J. Geophys. Res. 2015, 1, 3640–3657. [Google Scholar] [CrossRef]
- Guissard, A.; Sobieski, P.; Baufays, C. A unified approach to bistatic scattering for active and passive remote sensing of rough ocean surfaces. Trends Geophys. Res. 1992, 1, 43–68. [Google Scholar]
- Nunziata, F.; Sobieski, P.; Migliaccio, M. The two-scale BPM scattering model for sea biogenic slicks contrast. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1949–1956. [Google Scholar] [CrossRef]
- Montuori, A.; Nunziata, F.; Migliaccio, M.; Sobieski, P. X-Band two-scale sea surface scattering model to predict the contrast due to an oil slick. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4970–4978. [Google Scholar] [CrossRef]
- Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. 1997, 102, 15781–15796. [Google Scholar] [CrossRef]
- Wu, J. Wind-stress coefficients over sea surface near neutral conditions: A revisit. J. Phys. Oceanogr. 1980, 10, 727–740. [Google Scholar] [CrossRef] [Green Version]
- de Farias, E.G.G.; Lorenzzetti, J.A.; Chapron, B. Swell and wind-sea distributions over the mid-latitude and tropical North Atlantic for the period 2002–2008. Int. J. Oceanogr. 2012, 2012, 306723. [Google Scholar] [CrossRef]
- Callaghan, A.H. On the relationship between the energy dissipation rate of surface-breaking waves and oceanic whitecap coverage. J. Phys. Oceanogr. 2018, 48, 2609–2626. [Google Scholar] [CrossRef]
- Mouche, A.A.; Hauser, D.; Daloze, J.; Guerin, C. Dual-polarization measurements at C-band over the ocean: Results from airborne radar observations and comparison with ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 753–769. [Google Scholar] [CrossRef]
- Liu, G.; Yang, X.; Li, X.; Zhang, B.; Pichel, W.; Li, Z.; Zhou, X. A systematic comparison of the effect of polarization ratio models on sea surface wind retrieval from C-band synthetic aperture radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1100–1108. [Google Scholar] [CrossRef]
- Mouche, A.A.; Chapron, B.; Reul, N.; Hauser, D.; Quilfen, Y. Importance of the sea surface curvature to interpret the normalized radar cross section. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A. The effects of noise on polarimetric SAR data. In Proceedings of the IGARSS’93—IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993; pp. 799–802. [Google Scholar] [CrossRef]
- Minchew, B.; Jones, C.E.; Holt, B. Polarimetric analysis of backscatter from the Deepwater Horizon oil spill using L-band synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3812–3830. [Google Scholar] [CrossRef]
- Espeseth, M.M.; Brekke, C.; Jones, C.E.; Holt, B.; Freeman, A. The impact of system noise in polarimetric SAR imagery on oil spill observations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4194–4214. [Google Scholar] [CrossRef]
- Durden, S.; Vesecky, J. A physical radar cross-section model for a wind-driven sea with swell. IEEE J. Ocean. Eng. 1985, 10, 445–451. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; He, Y. Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Plant, W.J. A two-scale model of short wind-generated waves and scatterometry. J. Geophys. Res. 1986, 91, 10735–10749. [Google Scholar] [CrossRef]
- Phillips, O.M. The Dynamics of the Upper Ocean; Cambridge University Press: Cambridge, UK, 1977; 344p. [Google Scholar]
- Pierson, W.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
Scene | Product | Central Location | AoI | ||||||
---|---|---|---|---|---|---|---|---|---|
ID | ID | Date/Hour (UTM) | Latitude | Longitude | (°) | Orbit | (m s) | (°) | WA |
1 | 53,617 | 26 September 2009 01:56 | 32.43° N | 119.54° W | 31.3–33.0 | Ascending | 8.0 | 123 | 54.8 |
2 | 57,307 | 27 October 2009 01:52 | 32.43° N | 119.61° W | 24.6–26.5 | Ascending | 5.6 | 127 | 83.6 |
3 | 63,140 | 14 December 2009 01:52 | 34.36° N | 119.90° W | 25.7–27.6 | Ascending | 8.4 | 108 | 54.7 |
4 | 63,215 | 14 December 2009 14:09 | 34.31° N | 119.80° W | 24.6–26.5 | Descending | 4.2 | 172 | 123.4 |
5 | 79,608 | 1 May 2010 12:05 | 28.14° N | 92.27° W | 39.3–40.7 | Descending | 10.0 | 330 | 25.9 |
6 | 80,536 | 8 May 2010 12:01 | 26.80° N | 92.02° W | 41.9–43.3 | Descending | 6.0 | 270 | 35.7 |
7 | 80,536 | 8 May 2010 12:01 | 26.63° N | 92.05° W | 41.9–43.3 | Descending | 6.0 | 270 | 35.7 |
8 | 81,514 | 15 May 2010 11:57 | 28.39° N | 88.34° W | 41.9–43.3 | Descending | 7.3 | 295 | 47.1 |
9 | 496,265 | 5 August 2016 08:25 | 24.36° S | 44.37° W | 31.7–34.7 | Descending | 12.5 | 258 | 20.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viana, R.D.; Lorenzzetti, J.A.; Carvalho, J.T.; Nunziata, F. Estimating Energy Dissipation Rate from Breaking Waves Using Polarimetric SAR Images. Sensors 2020, 20, 6540. https://doi.org/10.3390/s20226540
Viana RD, Lorenzzetti JA, Carvalho JT, Nunziata F. Estimating Energy Dissipation Rate from Breaking Waves Using Polarimetric SAR Images. Sensors. 2020; 20(22):6540. https://doi.org/10.3390/s20226540
Chicago/Turabian StyleViana, Rafael D., João A. Lorenzzetti, Jonas T. Carvalho, and Ferdinando Nunziata. 2020. "Estimating Energy Dissipation Rate from Breaking Waves Using Polarimetric SAR Images" Sensors 20, no. 22: 6540. https://doi.org/10.3390/s20226540
APA StyleViana, R. D., Lorenzzetti, J. A., Carvalho, J. T., & Nunziata, F. (2020). Estimating Energy Dissipation Rate from Breaking Waves Using Polarimetric SAR Images. Sensors, 20(22), 6540. https://doi.org/10.3390/s20226540