An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series
Abstract
:1. Introduction
2. Principles and Methods
2.1. Basic Principles of the VMD Method
2.2. Grasshopper Optimisation Algorithm
2.3. Principle of the Wavelet Packet Algorithm
3. IVMD-WPT Algorithm
3.1. Improved VMD Method
3.2. IVMD-WPT
4. Experiment Analysis and Discussion
4.1. Simulation Experiment A
4.2. Simulation Experiment B
4.3. Noise Reduction Analysis with Real GNSS Elevation Time Series
5. Conclusions
- Compared with the traditional VMD method, this paper used the energy entropy mutual information as the objective function and used GOA to optimise the objective function to adaptively determine the number of decomposition mode functions (IMFs) and the value of the punishment factor and to improve the effect of noise reduction.
- Compared with the single EMD method, the IVMD method can effectively weaken the influence of the endpoint effect, thus improving the noise reduction effect. The simulation results showed that the RMSE decreased by 0.0106 mm and the CC and SNR increased by 0.0004, and 428.42 dB, respectively.
- Compared with the two single models of traditional EMD and IVMD proposed in this paper, the IVMD-WPT method was superior to the two single models in the three indicators of root mean square error, correlation coefficient and signal-to-noise ratio. The real results showed that the RMSE decreased by 11.4648 and 6.7322 mm and CC and SNR increased by 0.1458 and 0.0588 and 32.6773 and 26.3918 dB, respectively, thus verifying the effectiveness of the IVMD-WPT method in noise reduction. In addition, the local optimum problem of GOA (the appropriate parameters of WPT) need further exploration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GPS | Global Positioning System |
VMD | Variational Mode Decomposition |
IMFs | Intrinsic Modal Functions |
IVMD-WPT | Improved Variational Mode Decomposition and Wavelet Packet Transform |
EEMI | Energy Entropy Mutual Information |
GOA | Grasshopper Optimisation Algorithm |
RMSE | Root Mean Square Error |
CC | Correlation Coefficient |
SNR | Signal-to-Noise Ratio |
EMD | Empirical Mode Decomposition |
IVMD | Improved Variational Mode Decomposition |
CMONOC | Crustal Movement Observation Network of China |
IGS | International GNSS Service |
GNSS | Global Navigation Satellite System |
LSWA | Least-Squares Wavelet Analysis |
HHT | Hilbert–Huang Transform |
EEMD | Ensemble Empirical Mode Decomposition |
CEEMD | Complementary Ensemble Empirical Mode Decomposition |
References
- Bock, Y.; Melgar, D. Physical applications of GPS geodesy: A review. Rep. Prog. Phys. 2016, 79, 106801. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Montillet, J.P.; Fernandes, R.; Bos, M.; Yu, K.; Hua, X.; Jiang, W. Review of current GPS methodologies for producing accurate time series and their error sources. J. Geodyn. 2017, 106, 12–29. [Google Scholar] [CrossRef]
- Serpelloni, E.; Faccenna, C.; Spada, G.; Dong, D.; Williams, S.D. Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary. J. Geophys. Res. Solid Earth 2013, 118, 6003–6024. [Google Scholar] [CrossRef] [Green Version]
- Van Dam, T.M.; Blewitt, G.; Heflin, M.B. Atmospheric pressure loading effects on the global positioning system coordinate determinations. Geophys. Res. 1994, 99, 23939–23950. [Google Scholar] [CrossRef]
- Tregoning, P.; Watson, C. Atmospheric effects and spurious signals in GPS analyses. Geophys. Res. 2009, 114, B09403. [Google Scholar] [CrossRef] [Green Version]
- Soundy, A.W.; Panckhurst, B.J.; Brown, P.; Martin, A.; Molteno, T.C.; Schumayer, D. Comparison of Enhanced Noise Model Performance Based on Analysis of Civilian GPS Data. Sensors 2020, 20, 6050. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Chen, L.; Liu, J.; Wang, L.; Tao, T.; Wu, D.; Chen, R. A Review of Global Navigation Satellite System (GNSS)-based Dynamic Monitoring Technologies for Structural Health Monitoring. Remote Sens. 2019, 11, 1001. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Liu, Y.; Xi, J.; Guo, W. Noise smoothing for nonlinear time series using wavelet soft threshold. IEEE Signal Process Let. 2007, 14, 62–65. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modelling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- Ghaderpour, E.; Pagiatakis, S.D. LSWAVE: A MATLAB software for the least-squares wavelet and cross-wavelet analyses. GPS Solut. 2019, 23, 1–8. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Kontny, B. Identification of the noise model in the time series of GNSS stations coordinates using wavelet analysis. Remote Sens. 2018, 10, 1611. [Google Scholar] [CrossRef] [Green Version]
- Ghaderpour, E.; Pagiatakis, S.D. Least-squares wavelet analysis of unequally spaced and non-stationary time series and its applications. Math Geosci. 2017, 49, 819–844. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, M.L.; Qu, W.; Long, S.R.; Shen, S.S. Applications of Hilbert–Huang transform to non-stationary financial time series analysis. Appl. Stoch. Models Bus. 2003, 19, 245–268. [Google Scholar] [CrossRef]
- Baohong, F.; Yiqiang, G. Application of Kalman filter in GPS data preprocessing. Sci. Surv. Mapp. 2016, 41, 171–174. [Google Scholar]
- Mosavi, M.R.; Rezaei, M.J.; Pashaian, M.; Moghaddasi, M.S. A fast and accurate anti-jamming system based on wavelet packet transform for GPS receivers. Gps. Solut. 2017, 21, 415–426. [Google Scholar] [CrossRef]
- Sun, Z.; Chang, C.C. Structural damage assessment based on wavelet packet transform. J. Struct. Eng. 2002, 128, 1354–1361. [Google Scholar] [CrossRef]
- Cody, M.A. The wavelet packet transform: Extending the wavelet transform. DR Dobbs. J. 1994, 19, 44–46. [Google Scholar]
- Barros, J.; Diego, R.I. Analysis of harmonics in power systems using the wavelet-packet transform. IEEE T Instrum. Meas. 2007, 57, 63–69. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Math. Phys. Eng. Sci. 1971, 454, 903–995. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, M.; Yu, Q.; Zhang, H. Comparing the application of EMD and EEMD on time-frequency analysis of seimic signal. J. Appl. Geophys. 2012, 83, 29–34. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, L.; Ni, C. The chatter identification in end milling based on combining EMD and WPD. Int. J. Adv. Manuf. Technol. 2017, 91, 3339–3348. [Google Scholar] [CrossRef]
- Zheng, J.D.; Cheng, J.S.; Yang, Y. Modified EEMD algorithm and its applications. J. Vib. 2013, 32, 21–26. [Google Scholar]
- Shen, W.; Peng, C. Detection of different-time-scale signals in the length of day variation based on EEMD analysis technique. Geod. Geodyn. 2016, 7, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; He, X.; Ferreira, V.G. Ocean wave separation using CEEMD-Wavelet in GPS wave measurement. Sensors 2015, 15, 19416–19428. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Chen, X.; Feng, S. A GPS Time Series Prediction Model Based on CEEMD. J. Adv. Comput. Netw. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tang, H.; Wen, T.; Ma, J.; Tan, Q.; Xia, D.; Zhang, Y. A hybrid landslide displacement prediction method based on CEEMD and DTW-ACO-SVR—Cases studied in the three gorges reservoir area. Sensors 2020, 20, 4287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tang, H.; Tannant, D.D.; Lin, C.; Xia, D.; Liu, X.; Ma, J. Combined forecasting model with CEEMD-LCSS reconstruction and the ABC-SVR method for landslide displacement prediction. J. Clean. Prod. 2021, 293, 126205. [Google Scholar] [CrossRef]
- He, X.; Yu, K.; Montillet, J.P.; Xiong, C.; Lu, T.; Zhou, S.; Ma, X.; Cui, H.; Ming, F. GNSS-TS-NRS: An Open-source MATLAB-Based GNSS time series noise reduction software. Remote Sens. 2020, 12, 3532. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, H.; Hu, M.; Jiang, A.; Zhang, L.; Xu, F.; Hao, G. An adaptive CEEMDAN thresholding denoising method optimized by nonlocal means algorithm. IEEE Trans. Instrum. Meas. 2020, 69, 6891–6903. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Shen, Y.; Zheng, W.; Yin, W.; Xu, A.; Zhu, H. Feature Extraction Algorithm Using a Correlation Coefficient Combined with the VMD and Its Application to the GPS and GRACE. IEEE Access 2021, 9, 17507–17519. [Google Scholar] [CrossRef]
- Zhang, X.; Miao, Q.; Zhang, H.; Wang, L. A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery. Mech. Syst. Signal PR 2018, 108, 58–72. [Google Scholar] [CrossRef]
- Ahmed, W.A.; Wu, F.; Marlia, D.; Zhao, Y. Mitigation of Ionospheric Scintillation Effects on GNSS Signals with VMD-MFDFA. Remote Sens. 2019, 11, 2867. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Ma, J.; Wu, J.; Yuan, X. An adaptive VMD method based on improved GOA to extract early fault feature of rolling bearings. Int. J. Innov. Comput. Inf. Control 2019, 15, 1485–1505. [Google Scholar]
- Li, C.; Liu, Y.; Liao, Y. An Improved Parameter-Adaptive Variational Mode Decomposition Method and Its Application in Fault Diagnosis of Rolling Bearings. Shock Vib. 2021, 2021, 2968488. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Han, Y.; Xun, Y.; Chen, J.; Du, N.; Cao, Y.; Zheng, Y. GPS/INS Integrated Navigation Based on Grasshopper Optimization Algorithm. IFAC-Papers Online 2019, 52, 29–34. [Google Scholar] [CrossRef]
- Mafarja, M.; Aljarah, I.; Heidari, A.A.; Hammouri, A.I.; Faris, H.; Ala’M, A.Z.; Mirjalili, S. Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowl. Based Syst. 2018, 145, 25–45. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Shen, C.; Shi, J.; Zhu, Z. Initial center frequency-guided VMD for fault diagnosis of rotating machines. J. Sound Vib. 2018, 435, 36–55. [Google Scholar] [CrossRef]
- He, X.; Bos, M.S.; Montillet, J.P.; Fernandes, R.; Melbourne, T.; Jiang, W.; Li, W. Spatial Variations of Stochastic Noise Properties in GPS Time Series. Remote Sens. 2021, 13, 4534. [Google Scholar] [CrossRef]
- Silva, L.K.J.; Ramarakula, M. An efficient interference mitigation approach for NavIC receivers using improved variational mode decomposition and wavelet packet decomposition. Trans. Emerg. Telecommun. Technol. 2021, 32, e4242. [Google Scholar]
- Zhu, J.; Zhang, Z.; Kuang, C. A Reliable Evaluation Indicator of Wavelet Denoising. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 688–694. [Google Scholar]
Reconstructed Time Series | ||||||
---|---|---|---|---|---|---|
Index | ||||||
0.6015 | 0.1679 | 0.1731 | 0.2089 | 0.2961 | 0.3985 |
Methods | RMSE/mm | Correlation Coefficient (R) | Signal-to-Noise Ratio (Rsn/dB) |
---|---|---|---|
EMD | 0.2403 | 0.9992 | 637.95 |
IVMD | 0.2278 | 0.9993 | 1494.06 |
IVMD-WPT | 0.1563 | 0.9997 | 1500.23 |
Time | Intercept (a)/mm | Linear Velocity (b)/(mm/a) | Annual Amplitude (c)/mm | Annual Amplitude (d)/mm | Half-Year Amplitude (e)/mm | Half-Year Amplitude (f)/mm | Period (T) |
---|---|---|---|---|---|---|---|
2013–2017 | 1 | 2 | 1 | 1.2 | 1.2 | 0.8 | 200 |
Index | Reconstructed Time Series | ||||||
---|---|---|---|---|---|---|---|
0.3616 | 0.3105 | 0.2931 | 0.3150 | 0.3773 | 0.4950 | 0.6384 |
Methods | RMSE/mm | Correlation Coefficient (R) | Signal-to-Noise Ratio (Rsn/dB) |
---|---|---|---|
EMD | 0.6546 | 0.9785 | 23.5371 |
IVMD | 0.6459 | 0.9792 | 24.2762 |
IVMD-WPT | 0.6456 | 0.9792 | 24.3001 |
Site | Methods | RMSE/mm | Correlation Coefficient (R) | Signal-to-Noise Ratio (Rsn/dB) |
---|---|---|---|---|
ARTU | EMD | 4.8749 | 5.3318 | 0.9187 |
IVMD | 3.5984 | 10.3401 | 0.9568 | |
IVMD-WPT | 2.5846 | 20.8624 | 0.9781 | |
BJFS | EMD | 8.8094 | 25.4094 | 0.9808 |
IVMD | 6.9204 | 41.3146 | 0.9882 | |
IVMD-WPT | 3.2106 | 194.6615 | 0.9975 | |
CHAN | EMD | 5.8779 | 10.8899 | 0.9550 |
IVMD | 3.9240 | 23.9965 | 0.9800 | |
IVMD-WPT | 2.5389 | 58.2924 | 0.9917 | |
CHUN | EMD | 5.3458 | 2.0200 | 0.8184 |
IVMD | 3.6352 | 5.0499 | 0.9215 | |
IVMD-WPT | 2.9589 | 7.9185 | 0.9496 | |
DLHA | EMD | 142.7200 | 0.3229 | 0.0596 |
IVMD | 101.3457 | 0.2601 | 0.5831 | |
IVMD-WPT | 36.8291 | 6.4418 | 0.9772 | |
HRBN | EMD | 5.7921 | 23.4629 | 0.9792 |
IVMD | 3.9684 | 50.0957 | 0.9903 | |
IVMD-WPT | 2.8025 | 101.1486 | 0.9952 | |
KMIN | EMD | 7.5211 | 1.6570 | 0.7910 |
IVMD | 5.3586 | 3.7707 | 0.9017 | |
IVMD-WPT | 3.1839 | 11.9409 | 0.9687 | |
LUZH | EMD | 4.0890 | 4.8302 | 0.9092 |
IVMD | 3.8465 | 5.2619 | 0.9203 | |
IVMD-WPT | 2.4760 | 13.6532 | 0.9684 | |
PIMO | EMD | 4.5288 | 29.0476 | 0.9831 |
IVMD | 4.5896 | 27.6731 | 0.9827 | |
IVMD-WPT | 4.1185 | 34.4699 | 0.9861 | |
TAIN | EMD | 5.2684 | 5.0086 | 0.9108 |
IVMD | 3.8686 | 9.3159 | 0.9533 | |
IVMD-WPT | 2.7201 | 19.5294 | 0.9776 | |
WUSH | EMD | 5.1815 | 10.8638 | 0.9562 |
IVMD | 4.3153 | 15.2726 | 0.9699 | |
IVMD-WPT | 2.9788 | 32.7606 | 0.9860 | |
XIAG | EMD | 6.6184 | 1.3874 | 0.7279 |
IVMD | 4.4656 | 3.3062 | 0.8854 | |
IVMD-WPT | 2.6475 | 10.6794 | 0.9629 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Lu, T.; Montillet, J.-P.; He, X. An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series. Sensors 2021, 21, 8295. https://doi.org/10.3390/s21248295
Xu H, Lu T, Montillet J-P, He X. An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series. Sensors. 2021; 21(24):8295. https://doi.org/10.3390/s21248295
Chicago/Turabian StyleXu, Huaqing, Tieding Lu, Jean-Philippe Montillet, and Xiaoxing He. 2021. "An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series" Sensors 21, no. 24: 8295. https://doi.org/10.3390/s21248295