The Utility of Calibrating Wearable Sensors before Quantifying Infant Leg Movements
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Selected Wearable Sensors
3.2. Preparation of Datasets
3.3. Estimation of Errors and Measurement Noise
3.4. Error-Correction Procedure
3.5. Filtering High Frequency Components
4. Results
4.1. Offset, Misalignment, Gain, and Noise of Measurement Axes
4.2. Effect of Calibration and Low-Pass Filtering on the Algorithm Output of Data from Different Sensors
5. Discussion
5.1. Offset Error Is One Main Source of Incorrect Estimation
5.2. A Comparison with Alternative Calibration Methods
5.3. Additional Aspect to Be Considered
6. Limitation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulrich, B.D.; Ulrich, D.A. Spontaneous leg movements of infants with Down syndrome and nondisabled infants. Child. Dev. 1995, 66, 1844–1855. [Google Scholar] [CrossRef] [PubMed]
- Geerdink, J.J.; Hopkins, B.; Beek, W.J.; Heriza, C.B. The organization of leg movements in preterm and full-term infants after term age. Dev. Psychobiol. 1996, 29, 335–351. [Google Scholar] [CrossRef]
- Jeng, S.-F.; Chen, L.-C.; Yau, K.-I.T. Kinematic analysis of kicking movements in preterm infants with very low birth weight and full-term infants. Phys. Ther. 2002, 82, 148–159. [Google Scholar] [CrossRef] [PubMed]
- McKay, S.M.; Angulo-Barroso, R.M. Longitudinal assessment of leg motor activity and sleep patterns in infants with and without Down syndrome. Infant Behav. Dev. 2006, 29, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Abrishami, M.S.; Nocera, L.; Mert, M.; Trujillo-Priego, I.A.; Purushotham, S.; Shahabi, C.; Smith, B.A. Identification of Developmental Delay in Infants Using Wearable Sensors: Full-Day Leg Movement Statistical Feature Analysis. IEEE J. Transl. Eng. Health Med. 2019, 7, 2800207. [Google Scholar] [CrossRef]
- Gravem, D.; Singh, M.; Chen, C.; Rich, J.; Vaughan, J.; Goldberg, K.; Waffarn, F.; Chou, P.; Cooper, D.; Reinkensmeyer, D.; et al. Assessment of Infant Movement With a Compact Wireless Accelerometer System. J. Med. Devices 2012, 6, 021013. [Google Scholar] [CrossRef]
- Smith, B.A.; Trujillo-Priego, I.A.; Lane, C.J.; Finley, J.M.; Horak, F.B. Daily Quantity of Infant Leg Movement: Wearable Sensor Algorithm and Relationship to Walking Onset. Sensors 2015, 15, 19006–19020. [Google Scholar] [CrossRef]
- Thelen, E.; Fisher, D.M. The organization of spontaneous leg movements in newborn infants. J. Mot. Behav. 1983, 15, 353–377. [Google Scholar] [CrossRef]
- Lötters, J.C.; Schipper, J.; Veltink, P.H.; Olthuis, W.; Bergveld, P. Procedure for in-use calibration of triaxial accelerometers in medical applications. Sens. Actuators A Phys. 1998, 68, 221–228. [Google Scholar] [CrossRef]
- Ru, X.; Gu, N.; Shang, H.; Zhang, H. MEMS Inertial Sensor Calibration Technology: Current Status and Future Trends. Micromachines 2022, 13, 879. [Google Scholar] [CrossRef]
- Tedaldi, D.; Pretto, A.; Menegatti, E. A robust and easy to implement method for IMU calibration without external equipments. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3042–3049. [Google Scholar]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.-F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Horak, F.B. Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease. Expert. Rev. Med. Devices 2016, 13, 455–462. [Google Scholar] [CrossRef]
- Storm, F.A.; Heller, B.W.; Mazzà, C. Step detection and activity recognition accuracy of seven physical activity monitors. PLoS ONE 2015, 10, e0118723. [Google Scholar] [CrossRef]
- Mason, R.; Byerley, J.; Baker, A.; Powell, D.; Pearson, L.T.; Barry, G.; Godfrey, A.; Mancini, M.; Stuart, S.; Morris, R. Suitability of a Low-Cost Wearable Sensor to Assess Turning in Healthy Adults. Sensors 2022, 22, 9322. [Google Scholar] [CrossRef] [PubMed]
- Airaksinen, M.; Gallen, A.; Kivi, A.; Vijayakrishnan, P.; Häyrinen, T.; Ilén, E.; Räsänen, O.; Haataja, L.M.; Vanhatalo, S. Intelligent wearable allows out-of-the-lab tracking of developing motor abilities in infants. Commun. Med. 2022, 2, 69. [Google Scholar] [CrossRef]
- Doherty, A.; Jackson, D.; Hammerla, N.; Plötz, T.; Olivier, P.; Granat, M.H.; White, T.; van Hees, V.T.; Trenell, M.I.; Owen, C.G.; et al. Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study. PLoS ONE 2017, 12, e0169649. [Google Scholar] [CrossRef]
- Skawinski, K.; Montraveta Roca, F.; Findling, R.D.; Sigg, S. Workout Type Recognition and Repetition Counting with CNNs from 3D Acceleration Sensed on the Chest. In Advances in Computational Intelligence, Proceedings of the 15th International Work-Conference on Artificial Neural Networks, IWANN 2019, Gran Canaria, Spain, 12–14 June 2019; Rojas, I., Joya, G., Catala, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 347–359. [Google Scholar]
- Ishii, S.; Luimula, M.; Yokokubo, A.; Lopez, G. VR Dodge-ball: Application of Real-time Gesture Detection from Wearables to ExerGaming. In Proceedings of the 2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), IEEE, Mariehamn, Finland, 23–25 September 2020; pp. 000081–000082. [Google Scholar]
- van Hees, V.T.; Fang, Z.; Langford, J.; Assah, F.; Mohammad, A.; da Silva, I.C.M.; Trenell, M.I.; White, T.; Wareham, N.J.; Brage, S. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. J. Appl. Physiol. 2014, 117, 738–744. [Google Scholar] [CrossRef]
- Thelen, E.; Bradshaw, G.; Ward, J.A. Spontaneous kicking in month-old infants: Manifestation of a human central locomotor program. Behav. Neural Biol. 1981, 32, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Weitz, M.; Morseth, B.; Hopstock, L.A.; Horsch, A. Influence of Accelerometer Calibration on the Estimation of Objectively Measured Physical Activity: The Tromsø Study. J. Meas. Phys. Behav. 2024, 7. [Google Scholar] [CrossRef]
- Hildebrand, M.; VAN Hees, V.T.; Hansen, B.H.; Ekelund, U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef]
- Vähä-Ypyä, H.; Vasankari, T.; Husu, P.; Mänttäri, A.; Vuorimaa, T.; Suni, J.; Sievänen, H. Validation of Cut-Points for Evaluating the Intensity of Physical Activity with Accelerometry-Based Mean Amplitude Deviation (MAD). PLoS ONE 2015, 10, e0134813. [Google Scholar] [CrossRef] [PubMed]
- Bouten, C.V.; Koekkoek, K.T.; Verduin, M.; Kodde, R.; Janssen, J.D. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans. Biomed. Eng. 1997, 44, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Łuczak, S.; Zams, M.; Bagiński, K. Selected Aging Effects in Triaxial MEMS Accelerometers. J. Sens. 2019, 2019, 5184907. [Google Scholar] [CrossRef]
Name | Dimension (mm) 1 | Sampling Frequency (Hz) 2 | Range 3 | Resolution 3 | Noise 3 |
---|---|---|---|---|---|
Opal V2 | 43.7 × 39.7 × 13.7 (L × W × H) | 20 | ±16 g (A), ±2000 deg/s (G) | 14 bits (A), 16 bits (G) | 120 μg/√Hz (A), 0.0025 deg/s/√Hz |
Ax6 | 23 × 32.5 × 8.9 (L × W × H) | 25 | 16 bits (A, G) | N/A | |
Movesense Active HR2 | 36.6 × 10.6 (D × H) | 52 | 16 bits (A, G) | N/A |
Error | Axis | Opal v2 * | Ax6 * | Movesense Active HR2 * | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | ||
Offset | X | 0.018 | 0.013 | 0.013 | 0.062 | 0.030 | 0.065 | −0.002 | −0.017 | 0.084 |
(ideal = 0) | Y | −0.010 | −0.023 | 0.013 | −0.074 | −0.067 | −0.084 | −0.029 | −0.083 | −0.185 |
Z | −0.012 | −0.004 | 0.027 | 0.030 | 0.018 | −0.007 | 0.114 | 0.063 | 0.144 | |
Misalign. | X | 0.016 | 0.008 | 0.009 | 0.011 | 0.009 | 0.009 | 0.005 | 0.008 | 0.005 |
(ideal = 0) | Y | 0.006 | 0.006 | 0.000 | 0.016 | 0.005 | 0.001 | 0.004 | 0.021 | 0.004 |
Z | 0.006 | 0.023 | 0.014 | 0.011 | 0.012 | 0.004 | 0.004 | 0.001 | 0.017 | |
Gain | X | 0.999 | 0.999 | 0.999 | 1.002 | 0.998 | 0.998 | 1.009 | 0.997 | 1.008 |
(ideal = 1) | Y | 0.999 | 0.999 | 0.999 | 0.998 | 0.994 | 0.993 | 1.001 | 1.003 | 1.004 |
Z | 1.000 | 1.000 | 0.999 | 1.009 | 1.011 | 1.013 | 1.002 | 1.005 | 1.009 | |
Noise | X | 0.002 | 0.002 | 0.002 | 0.003 | 0.005 | 0.009 | 0.004 | 0.005 | 0.004 |
(ideal = 0) | Y | 0.002 | 0.002 | 0.003 | 0.001 | 0.001 | 0.002 | 0.004 | 0.004 | 0.008 |
Z | 0.002 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 | 0.004 | 0.004 | 0.004 |
Sensor | Raw | C | C + F | Noise after C + F (g) | ||
---|---|---|---|---|---|---|
X | Y | Z | ||||
Opal v2 | 269 | 269 | 195 | 0.001 | 0.001 | 0.001 |
Ax6 | 185 | 196 | 175 | 0.001 | 0.001 | 0.002 |
Movesense Active HR2 | 231 | 230 | 213 | 0.003 | 0.003 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.; Loeb, G.E.; Smith, B.A. The Utility of Calibrating Wearable Sensors before Quantifying Infant Leg Movements. Sensors 2024, 24, 5736. https://doi.org/10.3390/s24175736
Oh J, Loeb GE, Smith BA. The Utility of Calibrating Wearable Sensors before Quantifying Infant Leg Movements. Sensors. 2024; 24(17):5736. https://doi.org/10.3390/s24175736
Chicago/Turabian StyleOh, Jinseok, Gerald E. Loeb, and Beth A. Smith. 2024. "The Utility of Calibrating Wearable Sensors before Quantifying Infant Leg Movements" Sensors 24, no. 17: 5736. https://doi.org/10.3390/s24175736
APA StyleOh, J., Loeb, G. E., & Smith, B. A. (2024). The Utility of Calibrating Wearable Sensors before Quantifying Infant Leg Movements. Sensors, 24(17), 5736. https://doi.org/10.3390/s24175736