Soil Moisture Calibration Equations for Active Layer GPR Detection—a Case Study Specially for the Qinghai–Tibet Plateau Permafrost Regions
Abstract
:1. Introduction
2. Field Investigation Methods and Data
2.1. Active-layer Pits Investigation and Data
2.2. GPR Survey and Data Analysis
3. Results
3.1. Parameters Estimation for Complex Refractive Index Model
3.2. Error Analysis
4. Discussion: Representativeness and Applicability
4.1. Influence of Soil Organic Content
4.2. Influence of Soil Bulk Density
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kirkham, M.B. Time Domain Reflectometry. In Principles of Soil and Plant Water Relations, 2nd ed.; Kirkham, M.B., Ed.; Academic Press: Boston, MA, USA, 2014; pp. 103–122. [Google Scholar] [CrossRef]
- Huisman, J.A.; Hubbard, S.S.; Redman, J.D.; Annan, A.P. Measuring Soil Water Content with Ground Penetrating Radar: A Review. Vadose Zone J. 2003, 2, 476–491. [Google Scholar] [CrossRef]
- Parsekian, A.D.; Slater, L.; Gimenez, D. Application of ground-penetrating radar to measure near-saturation soil water content in peat soils. Water Resour. Res. 2012, 48, 02533. [Google Scholar] [CrossRef]
- Chen, A.; Parsekian, A.D.; Schaefer, K.; Jafarov, E.; Panda, S.; Liu, L.; Zhang, T.; Zebker, H. Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley, Alaska. Geophysics 2016, 81, H9–H19. [Google Scholar] [CrossRef]
- Liu, L.; Schaefer, K.; Gusmeroli, A.; Grosse, G.; Jones, B.M.; Zhang, T.; Parsekian, A.D.; Zebker, H.A. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska. Cryosphere 2014, 8, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Koyama, C.N.; Liu, H.; Takahashi, K.; Shimada, M.; Watanabe, M.; Khuut, T.; Sato, M. In-Situ Measurement of Soil Permittivity at Various Depths for the Calibration and Validation of Low-Frequency SAR Soil Moisture Models by Using GPR. Remote. Sens. 2017, 9, 580. [Google Scholar] [CrossRef] [Green Version]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Roth, C.H.; Malicki, M.A.; Plagge, R. Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. J. Soil Sci. 1992, 43, 1–13. [Google Scholar] [CrossRef]
- Zamolodchikov, D.; Karelin, D.V.; Ivaschenko, A.I.; Oechel, W.C.; Hastings, S.J. CO2 flux measurements in Russian Far East tundra using eddy covariance and closed chamber techniques. Tellus B Chem. Phys. Meteorol. 2003, 55, 879–892. [Google Scholar] [CrossRef]
- Engstrom, R.; Höpe, A.; Kwon, H.; Stow, D.; Zamolodchikov, D. Spatial distribution of near surface soil moisture and its relationship to microtopography in the Alaskan Arctic coastal plain. Hydrol. Res. 2005, 36, 219–234. [Google Scholar] [CrossRef]
- Birchak, J.; Gardner, C.; Hipp, J.; Victor, J. High dielectric constant microwave probes for sensing soil moisture. Proc. IEEE 1974, 62, 93–98. [Google Scholar] [CrossRef]
- Alharthi, A.; Lange, J. Soil water saturation: Dielectric determination. Water Resour. Res. 1987, 23, 591–595. [Google Scholar] [CrossRef]
- Roth, K.; Schulin, R.; Flühler, H.; Attinger, W. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 1990, 26, 2267–2273. [Google Scholar] [CrossRef]
- Comas, X.; Slater, L.; Reeve, A. Spatial variability in biogenic gas accumulations in peat soils is revealed by ground penetrating radar (GPR). Geophys. Res. Lett. 2005, 32, 08401. [Google Scholar] [CrossRef] [Green Version]
- Dobson, M.; Ulaby, F.; Hallikainen, M.; El-Rayes, M. Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models. IEEE Trans. Geosci. Remote. Sens. 1985, GE-23(1), 35–46. [Google Scholar] [CrossRef]
- Diamanti, N.; Elliott, E.J.; Jackson, S.R.; Annan, A.P. The WARR machine: system design, implementation and data. J. Environ. Eng. Geoph. 2018, 23, 469–487. [Google Scholar] [CrossRef]
- Jones, S.B.; Blonquist, J.M.; Robinson, D.A.; Rasmussen, V.P.; Or, D. Standardizing Characterization of Electromagnetic Water Content Sensors: Part 1. Methodology. Vadose Zone J. 2005, 4, 1048–1058. [Google Scholar] [CrossRef] [Green Version]
- Meissner, T.; Wentz, F. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote. Sens. 2004, 42, 1836–1849. [Google Scholar] [CrossRef] [Green Version]
- Atkins, R.T.; Pangburn, T.; Bates, R.E.; Brockett, B.E. Soil moisture determinations using capacitance probe methodology. Special report 98-2, US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory. 1998. Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a337497.pdf (accessed on 1 July 2019).
- Lane, J.A.; Saxton, J.A. Dielectric dispersion in pure polar liquids at very high radar frequencies, III, The effect of electrolytes in solution. Proc. R. Soc. Lond. 1952, 214, 531–545. [Google Scholar] [CrossRef]
- Zhaoqiang, J. Dielectric permittivity and its relationship with water content for several soils in China. Master’s Thesis, China Agricultural University, Beijing, China, 15 June 2005. [Google Scholar]
- Lange, S.F.; E Allaire, S.; Juneau, V. Water content as a function of apparent dielectric permittivity in a Fibric Limnic Humisol. Can. J. Soil Sci. 2008, 88, 79–84. [Google Scholar] [CrossRef]
- Bircher, S.; Andreasen, M.; Vuollet, J.; Vehviläinen, J.; Rautiainen, K.; Jonard, F.; Weihermüller, L.; Zakharova, E.; Wigneron, J.-P.; Kerr, Y.H. Soil moisture sensor calibration for organic soil surface layers. Geosci. Instrum. Methods Data Syst. 2016, 5, 109–125. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhao, L.; Ding, Y.; Wu, T.; Xiao, Y.; Du, E.; Liu, G.; Qiao, Y. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chin. Sci. Bull. 2012, 57, 4609–4616. [Google Scholar] [CrossRef] [Green Version]
- Cihlar, J.; Ulaby, F.T. Dielectric properties of soils as a function of moisture content. CRES Technical report-177-47, The University of Kansas Space Technology Center Raymond Nichols Hall; 1974. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750018483.pdf (accessed on 30 July 2019).
- Yuanshi, G.; Qiaohong, C.; Zongjia, S. The effects of soil bulk density, clay content and temperature on soil water content measurement using time-domain reflectometry. Hydrol. Process. 2003, 17, 3601–3614. [Google Scholar] [CrossRef]
- Wang, Z.-W.; Zhao, L.; Wu, X.-D.; Yue, G.-Y.; Zou, D.-F.; Nan, Z.-T.; Liu, G.-Y.; Pang, Q.-Q.; Fang, H.-B.; Shi, J.-Z.; et al. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. J. Mt. Sci. 2016, 13, 1035–1046. [Google Scholar] [CrossRef]
SN | Time | LandCover | DepthType | ALD_m | ρ_g/cm3 | SOM_% | ε | θ_measured |
---|---|---|---|---|---|---|---|---|
QT11 | 2015-9-23 | bare land | ALD | 2.80 | 1.6 | ND | 9.766 | 0.124 |
QT19 | 2015-10-8 | meadow | ALD | 2.14 | 1.8 | ND | 15.180 | 0.264 |
R02 | 2011-7-12 | meadow | STD | 2.50 | 1.7 | 0.6 | 10.633 | 0.163 |
R04 | 2011-7-13 | grass land | STD | 1.90 | 1.8 | 0.3 | 9.766 | 0.173 |
R09 | 2011-7-15 | meadow | STD | 1.10 | 1.6 | 1.4 | 21.973 | 0.371 |
R15 | 2011-7-18 | meadow | STD | 0.95 | 1.2 | 4.3 | 36.000 | 0.449 |
R16 | 2011-7-18 | wet meadow | STD | 0.60 | 0.6 | 17.5 | 59.172 | 0.614 |
R20 | 2011-7-23 | meadow | STD | 1.50 | 1.5 | 1.7 | 17.361 | 0.266 |
R21 | 2011-7-23 | meadow | STD | 1.10 | 1.3 | 3.9 | 25.855 | 0.405 |
R27 | 2011-7-31 | meadow | STD | 0.95 | 0.9 | 9.1 | 33.284 | 0.511 |
R29 | 2011-8-5 | meadow | STD | 1.40 | 1.3 | 9.9 | 25.000 | 0.455 |
R31 | 2011-8-17 | meadow | STD | 2.50 | 1.5 | 1.2 | 9.371 | 0.185 |
R34 | 2011-8-18 | meadow | STD | 2.00 | 1.5 | 4.0 | 17.361 | 0.308 |
T004 | 2012-8-18 | meadow | STD | 1.80 | 1.5 | ND | 11.891 | 0.187 |
T008 | 2012-8-19 | meadow | STD | 1.20 | 1.2 | ND | 32.040 | 0.523 |
WDL1 | 2015-9-30 | meadow | ALD | 2.20 | 1.5 | ND | 10.186 | 0.191 |
WDL4 | 2015-9-29 | meadow | ALD | 2.00 | 1.8 | ND | 14.421 | 0.231 |
XDT4 | 2015-9-15 | meadow | ALD | 1.70 | 1.4 | ND | 16.889 | 0.280 |
SN | S_mol/L_NaCl | T/℃ | Depth/cm | LNM | Year | εw |
---|---|---|---|---|---|---|
Ch02 | 0.028 | 2.25 | 265 | 12 | 2002 | 86 |
Ch03 | 0.032 | 2.40 | 270 | 12 | 2002 | 86 |
Ch04 | 0.010 | 1.26 | 95 | 10 | 2002 | 87 |
Ch05 | 0.064 | 3.71 | 250 | 12 | 2002 | 85 |
Ch06 | 0.073 | 0.50 | 140 | 8 | 2005 | 86 |
QT01 | 0.018 | 1.30 | 150 | 7 | 2004 | 86 |
QT02 | 0.019 | 1.86 | 230 | 8 | 2004 | 86 |
QT03 | 0.019 | 1.70 | 240 | 9 | 2004 | 86 |
QT04 | 0.025 | 2.37 | 300 | 10 | 2013 | 86 |
QT05 | 0.017 | 3.38 | 270 | 10 | 2004 | 86 |
QT06 | 0.021 | 2.60 | 285 | 10 | 2013 | 86 |
Average | 0.030 | 2.12 | 86 | |||
Lowerlimit | 0.000 | 0 | 88 | |||
Upperlimit | 0.073 | 3.71 | 84 |
N | a’ | a_εw = 86 | a_εw = 84 | a_εw = 88 | Error_a’ | Error_a | R2 |
---|---|---|---|---|---|---|---|
−1 | −4.709 | −1.012 | −1.012 | −1.011 | 3.697 | 0.001 | 0.89 |
−0.9 | −3.960 | −1.018 | −1.019 | −1.018 | 2.942 | 0.001 | 0.91 |
−0.8 | −3.363 | −1.029 | −1.030 | −1.029 | 2.334 | 0.001 | 0.91 |
−0.7 | −2.906 | −1.046 | −1.047 | −1.046 | 1.860 | 0.001 | 0.92 |
−0.6 | −2.559 | −1.074 | −1.075 | −1.073 | 1.485 | 0.002 | 0.93 |
−0.5 | −2.310 | −1.121 | −1.122 | −1.119 | 1.189 | 0.003 | 0.94 |
−0.4 | −2.165 | −1.202 | −1.205 | −1.200 | 0.963 | 0.005 | 0.94 |
−0.3 | −2.156 | −1.357 | −1.360 | −1.353 | 0.799 | 0.007 | 0.95 |
−0.2 | −2.409 | −1.696 | −1.701 | −1.690 | 0.713 | 0.011 | 0.95 |
−0.1 | −3.577 | −2.782 | −2.794 | −2.771 | 0.795 | 0.023 | 0.95 |
0.1 | 1.954 | 1.782 | 1.794 | 1.771 | 0.172 | 0.023 | 0.95 |
0.2 | 0.717 | 0.696 | 0.701 | 0.690 | 0.021 | 0.011 | 0.95 |
0.21 | 0.662 | 0.646 | 0.651 | 0.641 | 0.016 | 0.010 | 0.95 |
0.22 | 0.613 | 0.601 | 0.606 | 0.596 | 0.012 | 0.010 | 0.95 |
0.23 | 0.568 | 0.560 | 0.565 | 0.555 | 0.008 | 0.010 | 0.95 |
0.24 | 0.528 | 0.523 | 0.527 | 0.518 | 0.005 | 0.009 | 0.95 |
0.25 | 0.491 | 0.489 | 0.493 | 0.485 | 0.002 | 0.008 | 0.95 |
0.26 | 0.458 | 0.458 | 0.462 | 0.454 | 0.000 | 0.008 | 0.95 |
0.27 | 0.427 | 0.429 | 0.433 | 0.426 | 0.002 | 0.007 | 0.95 |
0.28 | 0.399 | 0.403 | 0.407 | 0.400 | 0.004 | 0.007 | 0.95 |
0.29 | 0.374 | 0.379 | 0.382 | 0.375 | 0.005 | 0.007 | 0.95 |
0.3 | 0.350 | 0.357 | 0.360 | 0.353 | 0.007 | 0.007 | 0.95 |
0.4 | 0.191 | 0.202 | 0.205 | 0.200 | 0.011 | 0.005 | 0.94 |
0.5 | 0.111 | 0.121 | 0.122 | 0.119 | 0.010 | 0.003 | 0.93 |
0.6 | 0.067 | 0.074 | 0.075 | 0.073 | 0.007 | 0.002 | 0.92 |
0.7 | 0.041 | 0.046 | 0.047 | 0.046 | 0.005 | 0.001 | 0.91 |
0.8 | 0.026 | 0.029 | 0.030 | 0.029 | 0.003 | 0.001 | 0.90 |
0.9 | 0.017 | 0.018 | 0.019 | 0.018 | 0.001 | 0.001 | 0.89 |
1 | 0.011 | 0.012 | 0.012 | 0.011 | 0.001 | 0.001 | 0.87 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, E.; Zhao, L.; Zou, D.; Li, R.; Wang, Z.; Wu, X.; Hu, G.; Zhao, Y.; Liu, G.; Sun, Z. Soil Moisture Calibration Equations for Active Layer GPR Detection—a Case Study Specially for the Qinghai–Tibet Plateau Permafrost Regions. Remote Sens. 2020, 12, 605. https://doi.org/10.3390/rs12040605
Du E, Zhao L, Zou D, Li R, Wang Z, Wu X, Hu G, Zhao Y, Liu G, Sun Z. Soil Moisture Calibration Equations for Active Layer GPR Detection—a Case Study Specially for the Qinghai–Tibet Plateau Permafrost Regions. Remote Sensing. 2020; 12(4):605. https://doi.org/10.3390/rs12040605
Chicago/Turabian StyleDu, Erji, Lin Zhao, Defu Zou, Ren Li, Zhiwei Wang, Xiaodong Wu, Guojie Hu, Yonghua Zhao, Guangyue Liu, and Zhe Sun. 2020. "Soil Moisture Calibration Equations for Active Layer GPR Detection—a Case Study Specially for the Qinghai–Tibet Plateau Permafrost Regions" Remote Sensing 12, no. 4: 605. https://doi.org/10.3390/rs12040605
APA StyleDu, E., Zhao, L., Zou, D., Li, R., Wang, Z., Wu, X., Hu, G., Zhao, Y., Liu, G., & Sun, Z. (2020). Soil Moisture Calibration Equations for Active Layer GPR Detection—a Case Study Specially for the Qinghai–Tibet Plateau Permafrost Regions. Remote Sensing, 12(4), 605. https://doi.org/10.3390/rs12040605