A Method for Autonomous Generation of High-Precision Time Scales for Navigation Constellations
Abstract
:1. Introduction
2. Time Scale Self-Generated Overall Architecture
3. Time Scale Algorithm Principle
3.1. KPW Time Scale Algorithm
3.2. Genetic Algorithm
4. Time-Frequency Driving Algorithm Principle
4.1. Atomic Frequency Standard Error Model
4.2. Algorithm Principle of Equivalent DPLL Steering Control System
4.3. Using GA to Improve Control System Parameter Selection
5. Simulation Results and Analysis
5.1. Experimental Analysis of Time Scale Algorithm
5.2. Experimental Analysis of Time-Frequency Steering Algorithm
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tavella, P.; Petit, G. Precise time scales and navigation systems: Mutual benefits of timekeeping and positioning. Satell. Navig. 2020, 1, 10. [Google Scholar] [CrossRef]
- Zhou, S.; Hu, X.; Liu, L.; Guo, R.; Zhu, L.; Chang, Z.; Tang, C.; Gong, X.; Li, R.; Yu, Y. Applications of two-way satellite time and frequency transfer in the BeiDou navigation satellite system. Sci. China Phys. Mech. Astron. 2016, 59, 109511. [Google Scholar] [CrossRef]
- Martoccia, D.; Bernstein, H.; Chan, Y.; Frueholz, R.; Wu, A. GPS Satellite Timing Performance Using the Autonomous Navigation (Autonav). In Proceedings of the 11th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1998), Nashville, TN, USA, 15–18 September 1998; pp. 1705–1712. [Google Scholar]
- Pan, J.Y.; Hu, X.G.; Zhou, S.S.; Tang, C.P.; Guo, R.; Zhu, L.F.; Tang, G.F.; Hu, G.M. Time synchronization of new-generation BDS satellites using inter-satellite link measurements. Adv. Space Res. 2018, 61, 145–153. [Google Scholar] [CrossRef]
- Tavella, P. Statistical and mathematical tools for atomic clocks. Metrologia 2008, 45, S183. [Google Scholar] [CrossRef]
- Panfilo, G.; Arias, F. The coordinated universal time (UTC). Metrologia 2019, 56, 042001. [Google Scholar] [CrossRef]
- Greenhall, C.A. Forming stable timescales from the Jones-Tryon Kalman filter. Metrologia 2003, 40, S335–S341. [Google Scholar] [CrossRef]
- Greenhall, C.A. Kalman plus weights: A time scale algorithm. In Proceedings of the 33rd Annual Precise Time and Time Interval Systems and Applications Meeting, No. 11, Long Beach, CA, USA, 27–29 November 2001; pp. 445–454. [Google Scholar]
- Ansari, K.; Jamjareegulgarn, P. Effect of Weighted PDOP on Performance of Linear Kalman Filter for RTK Drone Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–4. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Li, Y. Research on High-Precision Time-Frequency Signal Generation and Performance Evaluation. Ph.D. Dissertation, University of Chinese Academy of Sciences, Beijing, China, 2019. [Google Scholar]
- Li, S.; Hao, X.; Wang, H.; Yan, X. Design and implementation of closed-loop clock taming method based on phase-locked loop. In Proceedings of the 12th China Satellite Navigation Conference—S06 Time Reference and Precise Timing, Nanchang, China, 26–28 May 2021. [Google Scholar]
- Wang, Q.; Rochat, P. ONCLE (One Clock Ensemble) for Galileo’s Next-Generation Robust Timing System. NAVIGATION J. Inst. Navig. 2022, 69, 536. [Google Scholar] [CrossRef]
- Yan, X.; Li, C.; Liang, S.; Hao, X.; Wang, K. Design of satellite disciplined clock system based on deep integration of Beidou. In Proceedings of the 12th China Satellite Navigation Conference—S06 Time Reference and Precise Timing, Nanchang, China, 26–28 May 2021. [Google Scholar]
- Xue, Y.; Gong, H.; Liu, Z.; Zhu, X. Analysis of Disciplined Crystal Oscillator Method Based on GNSS. GNSS World China 2017, 42, 38–42. (In Chinese) [Google Scholar]
- Zhao, S.; Dong, S.; Bai, S.; Gao, Z. Research on an Optimized Frequency Steering Algorithm. J. Electron. Inf. Technol. 2021, 43, 1457–1464. (In Chinese) [Google Scholar]
- Zhao, S.; Dong, S.; Bai, S.; Wang, Y.; Qu, L. Research on the frequency steering algorithm of time-keeping frequency standard and primary frequency standard. Chin. J. Sci. Instrum. 2020, 41, 67–75. [Google Scholar]
- Mbaye, P.M.; Makdissi, A.; Plantard, C.; Vernotte, F. Composite clock: A new algorithm for servoing a VCO firstly to a hydrogen maser clock and then to a caesium clock. Metrologia 2008, 45, 74–81. [Google Scholar] [CrossRef]
- Plantard, C.; Mbaye, P.; Vernotte, F. Composite clock including a cs clock, a h-maser clock, and a voltage-controlled oscillator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1991, 57, 707–713. [Google Scholar] [CrossRef]
- Driessen, P.F. DPLL bit synchronizer with rapid acquisition using adaptive Kalman filtering techniques. IEEE Trans. Commun. 1994, 42, 2673–2675. [Google Scholar] [CrossRef]
- Wu, Y.; Gong, H.; Zhu, X.; Liu, W.; Ou, G. Twice Atomic Clock Steering Algorithm and Its Application in Forming a GNSS Time Reference. Acta Electron. Sin. 2016, 44, 1742–1750. (In Chinese) [Google Scholar]
- Wu, Y.; Gong, H.; Zhu, X.; Ou, G. A DPLL Method Applied to Clock Steering. IEEE Trans. Instrum. Meas. 2016, 65, 1331–1342. [Google Scholar] [CrossRef]
- Wu, Y.; Gong, H.; Zhu, X.; Ou, G. A Clock Steering Method: Using a Third-order Type 3 DPLL Equivalent to a Kalman Filter with a Delay. Metrologia 2015, 52, 864–877. [Google Scholar] [CrossRef]
- Howe, D.; Beard, R.; Greenhall, C.; Vernotte, F.; Riley, B. Total Hadamard Variance: Application to clock steering by Kalman filtering. In Proceedings of the 15th European Frequency and Time Forum, Neuchatel, Switzeland, 6–8 March 2001; pp. 423–427. [Google Scholar]
- Hutsell, S.T. Relating the Hadamard variance to MCS Kalman filter clock estimation. In Proceedings of the 27th Annual Precise Time and Time Interval Systems and Applications Meeting, San Diego, CA, USA, 29 November–1 December 1995; pp. 291–302. [Google Scholar]
- Janis, J.P.; Jones, M.R.; Quackenbush, N.F. Benefits of operating multiple atomic frequency standards for GNSS satellites. GPS Solut. 2021, 25, 1–6. [Google Scholar] [CrossRef]
- Leeson, D.B. A simple model of feedback oscillator noise spectrum. Proc. IEEE 1966, 54, 329–330. [Google Scholar] [CrossRef] [Green Version]
- Kou, Y.; Zhang, Q. The Simulation Method of Crystal Oscillator Error in GPS Receiver. J. Electron. Inf. Technol. 2004, 8, 1319–1324. (In Chinese) [Google Scholar]
NVP Group Number | NVP Pair | DPLL Gains | FRV | DAV | Intersection Deviations (Hz) | |||
---|---|---|---|---|---|---|---|---|
Q33 (s2) | R (s2) | Ks1 | Ks2 | Ks3 | f(L(f)) (Hz) | f (H) (Hz) | ||
No. 1 | 1 | 4.96 × 1023 | 0.0101 | 1.690 × 10−7 | 1.4189 × 10−12 | 1 × 10−5.2652 | 1 × 10−5.2657 | 4.3286 × 10−12 |
No. 2 | 1 | 1 × 1022 | 0.0193 | 6.215 × 10−7 | 1 × 10−11 | 1 × 10−4.9796 | 5.0562 × 10−6 | |
No. 3 | 1 | 1 × 1023 | 0.0132 | 2.884 × 10−7 | 3.1623 × 10−12 | 1 × 10−5.1487 | 1.6776 × 10−6 | |
No. 4 | 1 | 1 × 1024 | 0.009 | 1.338 × 10−7 | 1 × 10−12 | 1 × 10−5.3151 | 5.9883 × 10−7 | |
No. 5 | 1 | 1 × 1025 | 0.0061 | 6.214 × 10−8 | 3.1623 × 10−13 | 1 × 10−5.4839 | 2.1421 × 10−6 |
Atomic Time Type | ADEV@3 × 102 | ADEV@1 × 103 | ADEV@1 × 105 | ADEV@1 × 106 |
---|---|---|---|---|
G1 | 8.71 × 10−14 | 4.29 × 10−14 | 1.54 × 10−14 | 1.49 × 10−13 |
G3 | 8.28 × 10−14 | 4.10 × 10−14 | 1.04 × 10−13 | 6.21 × 10−13 |
G4 | 8.29 × 10−14 | 4.05 × 10−14 | 2.13 × 10−14 | 1.62 × 10−13 |
G6 | 8.46 × 10−14 | 4.16 × 10−14 | 6.71 × 10−14 | 5.35 × 10−13 |
G2 | 5.49 × 10−13 | 1.53 × 10−13 | 1.64 × 10−14 | 8.97 × 10−14 |
G5 | 9.45 × 10−14 | 2.54 × 10−13 | 1.13 × 10−14 | 8.02 × 10−15 |
G20 | 8.89 × 10−13 | 2.68 × 10−13 | 9.78 × 10−15 | 6.30 × 10−15 |
G31 | 5.88 × 10−13 | 1.61 × 10−13 | 1.09 × 10−14 | 1.97 × 10−14 |
TA (Steered) | 5.73 × 10−14 | 2.79 × 10−14 | 8.38 × 10−15 | 8.87 × 10−16 |
Atomic Time Type | 1 DAY | 5 DAY | 10 DAY |
---|---|---|---|
G1 | 8.35 × 10−9 | 5.03 × 10−9 | 5.70 × 10−8 |
G3 | 3.89 × 10−9 | 6.82 × 10−8 | 2.38 × 10−7 |
G4 | 1.08 × 10−9 | 7.75 × 10−9 | 5.26 × 10−8 |
G6 | 6.53 × 10−9 | 6.09 × 10−8 | 2.53 × 10−7 |
G2 | 1.77 × 10−9 | 2.77 × 10−9 | 3.03 × 10−8 |
G5 | 1.79 × 10−9 | 3.05 × 10−9 | 6.06 × 10−9 |
G20 | 2.46 × 10−9 | 7.51 × 10−9 | 2.58 × 10−8 |
G31 | 1.90 × 10−9 | 9.05 × 10−9 | 3.84 × 10−8 |
TA | 3.05 × 10−9 | 1.57 × 10−9 | 4.57 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Yi, X.; Dong, R.; Ren, Q.; Li, X.; Shuai, T.; Zhang, J.; Gong, W. A Method for Autonomous Generation of High-Precision Time Scales for Navigation Constellations. Sensors 2023, 23, 1703. https://doi.org/10.3390/s23031703
Yang S, Yi X, Dong R, Ren Q, Li X, Shuai T, Zhang J, Gong W. A Method for Autonomous Generation of High-Precision Time Scales for Navigation Constellations. Sensors. 2023; 23(3):1703. https://doi.org/10.3390/s23031703
Chicago/Turabian StyleYang, Shitao, Xiao Yi, Richang Dong, Qianyi Ren, Xupeng Li, Tao Shuai, Jun Zhang, and Wenbin Gong. 2023. "A Method for Autonomous Generation of High-Precision Time Scales for Navigation Constellations" Sensors 23, no. 3: 1703. https://doi.org/10.3390/s23031703
APA StyleYang, S., Yi, X., Dong, R., Ren, Q., Li, X., Shuai, T., Zhang, J., & Gong, W. (2023). A Method for Autonomous Generation of High-Precision Time Scales for Navigation Constellations. Sensors, 23(3), 1703. https://doi.org/10.3390/s23031703