Cross-Modal Interaction Between Perception and Vision of Grasping a Slanted Handrail to Reproduce the Sensation of Walking on a Slope in Virtual Reality †
Abstract
:1. Introduction
- We enhanced the sensation of walking on a slope by integrating visual and haptic information.
- We simulated the sensation of walking on a slope on a flat surface without employing any physical incline.
- We simulated the sensation of walking on a slope without impeding natural walking, achieved simply by grasping a handrail, requiring no complex training.
- We simulated the sensation of walking on a slope while minimizing the feeling of fear.
2. Related Work
2.1. Cross-Modality
2.2. Experience of Vertical Movement
2.3. Cross-Modal Interactions Between Visual Stimuli and the Sensation of Gripping a Handrail
3. User Evaluations
3.1. Preliminary Experiment
3.2. User Study of Reproducing the Sensation of Walking on a Slope
3.2.1. Participants
3.2.2. Experiment Design
3.2.3. Hardware
3.2.4. Measurements
- Did you feel like you were walking on a slope during the VR experience?
- How often did you feel like you were walking on a slope during the VR experience?
- Did you feel that the movements in the virtual environment matched the movements in the real world during the VR experience?
- How often did you feel that your movements in the virtual environment matched your movements in reality during the VR experience?
- How much fear did you feel?
3.2.5. Procedure
4. Results
5. Discussion
Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Son, H.; Gil, H.; Byeon, S.; Kim, S.Y.; Kim, J.R. Realwalk: Feeling ground surfaces while walking in virtual reality. In Proceedings of the Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–4. [Google Scholar]
- Langbehn, E.; Lubos, P.; Steinicke, F. Evaluation of locomotion techniques for room-scale vr: Joystick, teleportation, and redirected walking. In Proceedings of the Virtual Reality International Conference-Laval Virtual, Laval, France, 4–6 April 2018; pp. 1–9. [Google Scholar]
- Steinicke, F.; Bruder, G. Using Perceptual Illusions for Redirected Walking. IEEE Comput. Graph. Appl. 2013, 33, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Steinicke, F.; Bruder, G.; Jerald, J.; Frenz, H.; Lappe, M. Estimation of Detection Thresholds for Redirected Walking Techniques. IEEE Trans. Vis. Comput. Graph. 2009, 16, 17–27. [Google Scholar] [CrossRef]
- Matsumoto, K.; Narumi, T.; Ban, Y.; Yanase, Y.; Tanikawa, T.; Hirose, M. Unlimited Corridor: A Visuo-haptic Redirection System. In Proceedings of the 17th International Conference on Virtual-Reality Continuum and Its Applications in Industry (VRCAI ’19), Brisbane, QLD, Australia, 14–16 November 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Hashemian, A.M.; Adhikari, A.; Kruijff, E.; Heyde, M.v.d.; Riecke, B.E. Leaning-Based Interfaces Improve Ground-Based VR Locomotion in Reach-the-Target, Follow-the-Path, and Racing Tasks. IEEE Trans. Vis. Comput. Graph. 2023, 29, 1748–1768. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.; Kovacs, R.; Mehta, V.; Umapathi, U.; Köhler, S.; Cheng, L.P.; Baudisch, P. Level-ups: Motorized stilts that simulate stair steps in virtual reality. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, 18–23 April 2015; pp. 2157–2160. [Google Scholar]
- Ishikawa, R.; Inoue, A.; Hoshi, T. Investigating perceived slope gradient in virtual environment with visuo-haptic interaction. In Proceedings of the 30th Australian Conference on Computer-Human Interaction. Association for Computing Machinery, OzCHI ’18, Melbourne, Australia, 4–7 December 2018; pp. 559–562. [Google Scholar] [CrossRef]
- Nagao, R.; Matsumoto, K.; Narumi, T.; Tanikawa, T.; Hirose, M. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1584–1593. [Google Scholar] [CrossRef]
- Ernst, M.O.; Banks, M.S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 2002, 415, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, Y.; Perusquía-Hernández, M.; Kiyokawa, K.; Sakata, N. Reproducing Ascending and Descending Sensations in Virtual Reality Through Crossmodal Interactions with a Slanted Handrail. In Proceedings of the 2023 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Sydney, Australia, 16–20 October 2023; pp. 578–583. [Google Scholar] [CrossRef]
- Nakano, K.; Horita, D.; Sakata, N.; Kiyokawa, K.; Yanai, K.; Narumi, T. DeepTaste: Augmented reality gustatory manipulation with GAN-based real-time food-to-food translation. In Proceedings of the 2019 IEEE international symposium on mixed and augmented reality (ISMAR), Beijing, China, 14–18 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 212–223. [Google Scholar]
- Wu, Z.; Shi, R.; Li, Z.; Jiang, M.; Li, Y.; Yu, L.; Liang, H.N. Examining cross-modal correspondence between ambient color and taste perception in virtual reality. Front. Virtual Real. 2022, 3, 1056782. [Google Scholar] [CrossRef]
- Malpica, S.; Serrano, A.; Allue, M.; Bedia, M.G.; Masia, B. Crossmodal perception in virtual reality. Multimed. Tools Appl. 2020, 79, 3311–3331. [Google Scholar] [CrossRef]
- Kruijff, E.; Marquardt, A.; Trepkowski, C.; Lindeman, R.W.; Hinkenjann, A.; Maiero, J.; Riecke, B.E. On your feet! Enhancing vection in leaning-based interfaces through multisensory stimuli. In Proceedings of the 2016 Symposium on Spatial User Interaction, Tokyo, Japan, 15–16 October 2016; pp. 149–158. [Google Scholar]
- Bergström, J.; Mottelson, A.; Knibbe, J. Resized Grasping in VR: Estimating Thresholds for Object Discrimination. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST ’19), New York, NY, USA, 20–23 October 2019; pp. 1175–1183. [Google Scholar] [CrossRef]
- Matsumoto, K.; Hashimoto, T.; Mizutani, J.; Yonahara, H.; Nagao, R.; Narumi, T.; Tanikawa, T.; Hirose, M. Magic table: Deformable props using visuo haptic redirection. In Proceedings of the SIGGRAPH Asia 2017 Emerging Technologies, Bangkok, Thailand, 27–30 November 2017; pp. 1–2. [Google Scholar]
- Huang, H.Y.; Ning, C.W.; Wang, P.Y.; Cheng, J.H.; Cheng, L.P. Haptic-go-round: A surrounding platform for encounter-type haptics in virtual reality experiences. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–10. [Google Scholar]
- Cheng, L.P.; Ofek, E.; Holz, C.; Benko, H.; Wilson, A.D. Sparse haptic proxy: Touch feedback in virtual environments using a general passive prop. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 3718–3728. [Google Scholar]
- Wilberz, A.; Leschtschow, D.; Trepkowski, C.; Maiero, J.; Kruijff, E.; Riecke, B. FaceHaptics: Robot Arm based Versatile Facial Haptics for Immersive Environments. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, Honolulu, HI, USA, 25–30 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–14. [Google Scholar] [CrossRef]
- Cheng, L.P.; Roumen, T.; Rantzsch, H.; Köhler, S.; Schmidt, P.; Kovacs, R.; Jasper, J.; Kemper, J.; Baudisch, P. TurkDeck: Physical Virtual Reality Based on People. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, UIST ’15, Charlotte, NC, USA, 11–15 November 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 417–426. [Google Scholar] [CrossRef]
- Zhang, S.H.; Chen, C.H.; Zollmann, S. One-step out-of-place resetting for redirected walking in VR. IEEE Trans. Vis. Comput. Graph. 2022, 29, 3327–3339. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Kwon, S.U.; Cho, Y.H.; Jeon, S.B.; Lee, I.K. Redirected Walking in Infinite Virtual Indoor Environment Using Change-blindness. arXiv 2022, arXiv:2212.13733. [Google Scholar]
- Hoshikawa, Y.; Fujita, K.; Takashima, K.; Fjeld, M.; Kitamura, Y. RedirectedDoors: Redirection while opening doors in virtual reality. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Christchurch, New Zealand, 12–16 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 464–473. [Google Scholar]
- Matsumoto, K.; Langbehn, E.; Narumi, T.; Steinicke, F. Detection Thresholds for Vertical Gains in VR and Drone-based Telepresence Systems. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Atlanta, GA, USA, 22–26 March 2020; pp. 101–107. [Google Scholar] [CrossRef]
- Iwata, H.; Yano, H.; Nakaizumi, F. Gait Master: A versatile locomotion interface for uneven virtual terrain. In Proceedings of the Proceedings IEEE Virtual Reality 2001, Yokohama, Japan, 13–17 March 2001; pp. 131–137. [Google Scholar] [CrossRef]
- Hirao, Y.; Narumi, T.; Argelaguet, F.; Lécuyer, A. Revisiting the Scheme of Walking-in-Place by Introducing Step-Height Control, Elastic Input and Pseudo-Haptic Feedback. arXiv 2022, arXiv:2205.04845. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nakamura, J.; Amemiya, T.; Ikei, Y.; Kitazaki, M. Enhancing Virtual Walking Sensation Using Self-Avatar in First-Person Perspective and Foot Vibrations. Front. Virtual Real. 2021, 2, 654088. [Google Scholar] [CrossRef]
- Nordahl, R.; Serafin, S.; Turchet, L.; Nilsson, N.C. A multimodal architecture for simulating natural interactive walking in virtual environments. PsychNology J. 2011, 9, 245–268. [Google Scholar]
- Nordahl, R.; Nilsson, N.C.; Turchet, L.; Serafin, S. Vertical illusory self-motion through haptic stimulation of the feet. In Proceedings of the 2012 IEEE VR Workshop on Perceptual Illusions in Virtual Environments, Costa Mesa, CA, USA, 4–6 March 2012; pp. 21–26. [Google Scholar] [CrossRef]
- Darken, R.P.; Cockayne, W.R.; Carmein, D. The omni-directional treadmill: A locomotion device for virtual worlds. In Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology (UIST ’97), Banff, AB, Canada, 14–17 October 1997; Association for Computing Machinery: New York, NY, USA, 1997; pp. 213–221. [Google Scholar] [CrossRef]
- Ban, Y.; Kajinami, T.; Narumi, T.; Tanikawa, T.; Hirose, M. Modifying an identified curved surface shape using pseudo-haptic effect. In Proceedings of the 2012 IEEE Haptics Symposium (HAPTICS), Vancouver, BC, Canada, 4–7 March 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 211–216. [Google Scholar]
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Schubert, T.; Friedmann, F.; Regenbrecht, H. The Experience of Presence: Factor Analytic Insights. Presence Teleoper. Virtual Environ. 2001, 10, 266–281. [Google Scholar] [CrossRef]
- Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Adv. Health Sci. Educ. Theory Pract. 2010, 15, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, L.; Elliott, D.; Starkes, J.L. Gender differences in perception of self-orientation: Software or hardware? Perception 2004, 33, 329–337. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohashi, Y.; Perusquía-Hernández, M.; Kiyokawa, K.; Sakata, N. Cross-Modal Interaction Between Perception and Vision of Grasping a Slanted Handrail to Reproduce the Sensation of Walking on a Slope in Virtual Reality. Sensors 2025, 25, 938. https://doi.org/10.3390/s25030938
Ohashi Y, Perusquía-Hernández M, Kiyokawa K, Sakata N. Cross-Modal Interaction Between Perception and Vision of Grasping a Slanted Handrail to Reproduce the Sensation of Walking on a Slope in Virtual Reality. Sensors. 2025; 25(3):938. https://doi.org/10.3390/s25030938
Chicago/Turabian StyleOhashi, Yuto, Monica Perusquía-Hernández, Kiyoshi Kiyokawa, and Nobuchika Sakata. 2025. "Cross-Modal Interaction Between Perception and Vision of Grasping a Slanted Handrail to Reproduce the Sensation of Walking on a Slope in Virtual Reality" Sensors 25, no. 3: 938. https://doi.org/10.3390/s25030938
APA StyleOhashi, Y., Perusquía-Hernández, M., Kiyokawa, K., & Sakata, N. (2025). Cross-Modal Interaction Between Perception and Vision of Grasping a Slanted Handrail to Reproduce the Sensation of Walking on a Slope in Virtual Reality. Sensors, 25(3), 938. https://doi.org/10.3390/s25030938