Abstract
For 25 years, we have been working to build cognitive models of mathematics, which have become a basis for middle- and high-school curricula. We discuss the theoretical background of this approach and evidence that the resulting curricula are more effective than other approaches to instruction. We also discuss how embedding a well specified theory in our instructional software allows us to dynamically evaluate the effectiveness of our instruction at a more detailed level than was previously possible. The current widespread use of the software is allowing us to test hypotheses across large numbers of students. We believe that this will lead to new approaches both to understanding mathematical cognition and to improving instruction.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Aleven, V. A. W. M. M., &Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing and explaining with a computer-based Cognitive Tutor.Cognitive Science,26, 147–179.
Anderson, J. R. (1983).The architecture of cognition. Cambridge, MA: Harvard University Press.
Anderson, J. R. (1990).The adaptive character of thought. Hillsdale, NJ: Erlbaum.
Anderson, J. R. (1993).Rules of the mind. Hillsdale, NJ: Erlbaum.
Anderson, J. R. (2002). Spanning seven orders of magnitude: A challenge for cognitive modeling.Cognitive Science,26, 85–112.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebière, C., &Qin, Y. (2004). An integrated theory of the mind.Psychological Review, 111, 1036–1060.
Anderson, J. R., Boyle, C. F., Corbett, A. T., &Lewis, M. W. (1990). Cognitive modeling and intelligent tutoring.Artificial Intelligence,42, 7–49.
Anderson, J. R., Boyle, C. F., Farrell, R., &Reiser, B. J. (1987). Cognitive principles in the design of computer tutors. In P. Morris (Ed.),Modelling cognition (pp. 93–133). Chichester, U.K.: Wiley.
Anderson, J. R., Conrad, F. G., &Corbett, A. T. (1989). Skill acquisition and the LISP tutor.Cognitive Science,13, 467–505.
Anderson, J. R., Corbett, A. T., Koedinger, K. R., &Pelletier, R. (1995). Cognitive tutors: Lessons learned.Journal of the Learning Sciences,4, 167–207.
Anderson, J. R., &Lebière, C. (1998).The atomic components of thought. Mahwah, NJ: Erlbaum.
Cen, H., Koedinger, K. R., &Junker, B. (2005). Learning Factors Analysis: A general method for cognitive model evaluation and improvement. In M. Ikeda, K. Ashley, & T. Chan (Eds.),Intelligent Tutoring Systems 8th International Conference (pp. 164–175). Berlin: Springer.
Corbett, A. T., &Anderson, J. R. (1995a). Knowledge decomposition and subgoal reification in the ACT programming tutor. In J. Greer (Ed.),Artificial intelligence and education, 1995: The proceedings of AI-ED 95 (pp. 469–476). Charlottesville, VA: AACE Press.
Corbett, A. T., &Anderson, J. R. (1995b). Knowledge tracing: Modeling the acquisition of procedural knowledge.User Modeling & User-Adapted Interaction,4, 253–278.
Corbett, A. T., Koedinger, K. R., &Anderson, J. R. (1997). Intelligent tutoring systems. In M. G. Helander, T. K. Landauer, & P. Prabhu (Eds.),Handbook of human-computer interaction (2nd ed., pp. 849–874). Amsterdam: Elsevier.
Corbett, A. [T.], McLaughlin, M., Scarpinatto, K. C., &Hadley, W. H. (2000). Analyzing and generating mathematical models: An Algebra II cognitive tutor design study. In G. Gauthier, C. Frasson, & K. van Lehn (Eds.),Intelligent Tutoring Systems: Fifth international conference (pp. 314–323). Berlin: Springer.
Corbett, A. T., Trask, H. J., Scarpinatto, K. C., &Hadley, W. S. (1998). A formative evaluation of the PACT Algebra II Tutor: Support for simple hierarchical reasoning. In B. P. Goettl, H. Halff, C. Redfield, & V. Shute (Eds.),Intelligent Tutoring Systems: Fourth International Conference, ITS ’98 (pp. 374–383). New York: Springer.
Gluck, K. A. (1999). Eye movements and algebra tutoring.Dissertation Abstracts International,61, 1664B.
Junker, B. W., Koedinger, K. R., & Trottini, M. (2000, July).Finding improvements in student models for intelligent tutoring systems via variable selection for a linear logistic test model. Paper presented at the 65th Annual Meeting of the Psychometric Society, Vancouver.
Koedinger, K. R., &Anderson, J. R. (1990). Abstract planning and perceptual chunks: Elements of expertise in geometry.Cognitive Science,14, 511–550.
Koedinger, K. R., &Anderson, J. R. (1993). Effective use of intelligent software in high school math classrooms. InProceedings of the Sixth World Conference on Artificial Intelligence in Education (pp. 241–248). Charlottesville, VA: Association for the Advancement of Computing in Education.
Koedinger, K. R., &Anderson, J. R. (1998). Illustrating principled design: The early evolution of a cognitive tutor for algebra symbolization.Interactive Learning Environments,5, 161–180.
Koedinger, K. R., Anderson, J. R., Hadley, W. H., &Mark, M. (1997). Intelligent tutoring goes to school in the big city.International Journal of Artificial Intelligence in Education,8, 30–43.
Koedinger, K. R., Corbett, A. T., Ritter, S., & Shapiro, L. J. (2000).Carnegie Learning’s Cognitive Tutor: Summary research results. Pittsburgh: Carnegie Learning. Available at www.carnegielearning .com/web_docs/CMU_research_results.pdf.Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: Effects of representations on quantitative reasoning.Journal of the Learning Sciences,13, 129-164.Lebière, C. (1999). The dynamics of cognition: An ACT-R model of cognitive arithmetic.Kognitionswissenschaft,8, 5-19.
Mark, M. A., & Koedinger, K. R. (1999). Strategic support of algebraic expression writing. InProceedings of the Seventh International Conference on User Modeling (pp. 149-158). Available at www.cs.usask.ca/UM99/Proc/mark.pdf.
Morgan, P., &Ritter, S. (2002).An experimental study of the effects of Cognitive Tutor Algebra I on student knowledge and attitude. Pittsburgh: Carnegie Learning. Available at www.carnegielearning.com/web_docs/morgan_ritter_2002.pdf.
Nathan, M. J., &Koedinger, K. R. (2000a). An investigation of teachers’ beliefs of students’ algebra development.Cognition & Instruction,18, 209–237.
Nathan, M. J., &Koedinger, K. R. (2000b). Teachers’ and researchers’ beliefs about the development of algebraic reasoning.Journal for Research in Mathematics Education,31, 168–190.
National Research Council (2003).Strategic education research partnership (M. S. Donovan, A. K. Wigdor, & C. E. Snow, Eds.). Washington, DC: National Academies Press.
Newell, A. (1973). You can’t play 20 questions with nature and win: Projective comments on the papers of this symposium. In W. G. Chase (Ed.),Visual information processing (pp. 283–310). New York: Academic Press.
Newell, A. (1990).Unified theories of cognition. Cambridge, MA: Harvard University Press.
Ritter, S., &Anderson, J. R. (1995). Calculation and strategy in the equation solving tutor. In J. D. Moore & J. F. Lehman (Eds.),Proceedings of the 17th Annual Conference of the Cognitive Science Society (pp. 413–418). Hillsdale, NJ: Erlbaum.
Rittle-Johnson, B., &Koedinger, K. R. (2002). Comparing instructional strategies for integrating conceptual and procedural knowledge. In D. S. Mewborn, P. Sztajin, D. Y. White, H. G. Wiegel, R. L. Bryant, & K. Nooney (Eds.),Proceedings of the 24th Annual Meeting of the North American Chapters of the International Group for the Psychology of Mathematics Education (pp. 969–978). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.
Rittle-Johnson, B., &Koedinger, K. R. (2005). Designing better learning environments: Knowledge scaffolding supports mathematical problem solving.Cognition & Instruction,23, 313–349.
Rittle-Johnson, B., &Siegler, R. S. (1998). The relation between conceptual and procedural knowledge in learning mathematics: A review. In C. Donlan (Ed.),The development of mathematical skills: Studies in developmental psychology (pp. 75–110). Hove, U.K.: Psychology Press.
Rittle-Johnson, B., Siegler, R. S., &Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process.Journal of Educational Psychology,93, 346–362.
Sarkis, H. (2004).Cognitive Tutor Algebra 1 program evaluation: Miami-Dade County public schools. Lighthouse Point, FL: The Reliability Group. Available at www.carnegielearning.com/web_docs/sarkis_2004.pdf.
Siegler, R. S., &Crowley, K. (1991). The microgenetic method: A direct means for studying cognitive development.American Psychologist,46, 606–620.
Siegler, R. S., &Shipley, C. (1995). Variation, selection, and cognitive change. In T. J. Simon & G. S. Halford (Eds.),Developing cognitive competence: New approaches to process modeling (pp. 31–76). Hillsdale, NJ: Erlbaum.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ritter, S., Anderson, J.R., Koedinger, K.R. et al. Cognitive Tutor: Applied research in mathematics education. Psychonomic Bulletin & Review 14, 249–255 (2007). https://doi.org/10.3758/BF03194060
Issue Date:
DOI: https://doi.org/10.3758/BF03194060