Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MTLD, vocd-D, and HD-D: A validation study of sophisticated approaches to lexical diversity assessment

  • Articles From the SCiP Conference
  • Published:
Behavior Research Methods Aims and scope Submit manuscript

Abstract

The main purpose of this study was to examine the validity of the approach to lexical diversity assessment known as the measure of textual lexical diversity (MTLD). The index for this approach is calculated as the mean length of word strings that maintain a criterion level of lexical variation. To validate the MTLD approach, we compared it against the performances of the primary competing indices in the field, which include vocd-D, TTR, Maas, Yule’s K, and an HD-D index derived directly from the hypergeometric distribution function. The comparisons involved assessments of convergent validity, divergent validity, internal validity, and incremental validity. The results of our assessments of these indices across two separate corpora suggest three major findings. First, MTLD performs well with respect to all four types of validity and is, in fact, the only index not found to vary as a function of text length. Second, HD-D is a viable alternative to the vocd-D standard. And third, three of the indices—MTLD, vocd-D (or HD-D), and Maas—appear to capture unique lexical information. We conclude by advising researchers to consider using MTLD, vocd-D (or HD-D), and Maas in their studies, rather than any single index, noting that lexical diversity can be assessed in many ways and each approach may be informative as to the construct under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Educational Research Association, American Psychological Association, & National Council on Measurement in Education (1999). Standards for educational and psychological testing. Washington, DC: American Educational Research Association.

    Google Scholar 

  • Best, R., Ozuru, Y., Floyd, R., & McNamara, D. S. (2006). Children’s text comprehension: Effects of genre, knowledge, and text cohesion. In S. A. Barab, K. E. Hay, & D. T. Hickey (Eds.), Proceedings of the Seventh International Conference of the Learning Sciences (pp. 37–42). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Biber, D. (1988). Variation across speech and writing. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Biber, D. (1989). A typology of English texts. Linguistics, 27, 3–43.

    Article  Google Scholar 

  • Biggs, A., Daniel, L., Feather, R. M., Ortleb, E., Rillero, P., Snyder, S. L., & Zike, D. (2003). Glencoe science: Science level green. New York: Glencoe/McGraw-Hill.

    Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Crossley, S. A., & McNamara, D. S. (2009). Computationally assessing lexical differences in L1 and L2 writing. Journal of Second Language Writing, 18, 119–135.

    Article  Google Scholar 

  • Crossley, S. A., & McNamara, D. S. (in press). Predicting second language writing proficiency: The role of cohesion, readability, and lexical difficulty. Journal of Research in Reading.

  • Crossley, S. A., Salsbury, T., & McNamara, D. S. (2009). Measuring second language lexical growth using hypernymic relationships. Language Learning, 59, 307–334.

    Article  Google Scholar 

  • Dempsey, K. B., McCarthy, P. M., & McNamara, D. S. (2007). Using phrasal verbs as an index to distinguish text genres. In D. Wilson & G. Sutcliffe (Eds.), Proceedings of the Twentieth International Florida Artificial Intelligence Research Society Conference (pp. 217–222). Menlo Park, CA: AAAI Press.

    Google Scholar 

  • Dugast, D. (1978). Sur quoi se fonde la notion d’étendue théoretique du vocabulaire? Le Français Moderne, 46, 25–32.

    Google Scholar 

  • Ertmer, P. A., Bai, H., Dong, C., Khalil, M., Park, S. H., & Wang, L. (2002). Online professional development: Building administrators’ capacity for technology leadership. Journal in Computing Teacher Education, 19, 5–11.

    Google Scholar 

  • Glaser, B. G., & Strauss, A. (1967). Discovery of grounded theory: Strategies for qualitative research. New York: Aldine.

    Google Scholar 

  • Harris Wright, H., Silverman, S. W., & Newhoff, M. (2003). Measures of lexical diversity in aphasia. Aphasiology, 17, 443–452.

    Article  Google Scholar 

  • Herdan, G. (1964). Quantitative linguistics. London: Butterworths.

    Google Scholar 

  • Hess, C. W., Sefton, K. M., & Landry, R. G. (1986). Sample size and type-token ratios for oral language of preschool children. Journal of Speech & Hearing Research, 29, 129–134.

    Article  Google Scholar 

  • Honoré, A. (1979). Some simple measures of richness of vocabulary. Association for Literary & Linguistic Computing Bulletin, 7, 172–177.

    Google Scholar 

  • Jarvis, S. (2002). Short texts, best fitting curves, and new measures of lexical diversity. Language Testing, 19, 57–84.

    Article  Google Scholar 

  • Johansson, S., Leech, G., & Goodluck, H. (1978). Manual of information to accompany the Lancaster-Oslo/Bergen Corpus of British English, for use with digital computers. Oslo: University of Oslo, Department of English.

    Google Scholar 

  • Johnson, W. (1944). Studies in language behavior: I. A program of research. Psychological Monographs, 56, 1–15.

    Article  Google Scholar 

  • Kučera, H., & Francis, W. N. (1967). Computational analysis of present-day American English. Providence, RI: Brown University Press.

    Google Scholar 

  • Landauer, T. K., Laham, D., Rehder, B., & Schreiner, M. E. (1997). How well can passage meaning be derived without using word order? A comparison of latent semantic analysis and humans. In M. G. Shafto & P. Langley (Eds.), Proceedings of the 19th Annual Meeting of the Cognitive Science Society (pp. 412–417). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.

    Book  Google Scholar 

  • Louwerse, M. M., McCarthy, P. M., McNamara, D. S., & Graesser, A. C. (2004). Variation in language and cohesion across written and spoken registers. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the 26th Annual Conference of the Cognitive Science Society (pp. 843–848). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Maas, H. D. (1972). Zusammenhang zwischen Wortschatzumfang und Länge eines Textes. Zeitschrift für Literaturwissenschaft und Linguistik, 8, 73–79.

    Google Scholar 

  • Malvern, D. D., Richards, B. J., Chipere, N., & Durán, P. (2004). Lexical diversity and language development: Quantification and assessment. Houndmills, NH: Palgrave Macmillan.

    Book  Google Scholar 

  • McCarthy, P. M., Dufty, D., Hempelman, C., Cai, Z., Graesser, A. C., & McNamara, D. S. (in press). Evaluating givenness/newness. Discourse Processes.

  • McCarthy, P. M., & Jarvis, S. (2007). A theoretical and empirical evaluation of vocd. Language Testing, 24, 459–488.

    Article  Google Scholar 

  • McCarthy, P. M., Myers, J. C., Briner, S. W., Graesser, A. C., & McNamara, D. S. (2009). A psychological and computational study of genre recognition. Journal for Language Technology & Computational Linguistics, 24, 23–55.

    Article  Google Scholar 

  • McEnery, T. (2003). Corpus linguistics. In R. Mitkov (Ed.), Handbook of computational linguistics (pp. 448–463). Oxford: Oxford University Press.

    Google Scholar 

  • McKee, G., Malvern, D., & Richards, B. (2000). Measuring vocabulary diversity using dedicated software. Literary & Linguistic Computing, 15, 323–337.

    Article  Google Scholar 

  • McNamara, D. S., Crossley, S. A., & McCarthy, P. M. (2010). Linguistic features of writing quality. Written Communication, 27, 57–86.

    Article  Google Scholar 

  • McNamara, D. S., Louwerse, M. M., McCarthy, P. M., & Graesser, A. C. (in press). Coh-Metrix: Capturing linguistic features of cohesion. Discourse Processes.

  • Miller, D. P. (1981). The depth/breadth trade-off in hierarchical computer menus. In Proceedings of the Human Factors Society 25th Annual Meeting (pp. 296–300). Santa Monica, CA: HFES.

    Google Scholar 

  • Morse, J. M. (1995). The significance of saturation. Qualitative Health Research, 5, 147–149.

    Article  Google Scholar 

  • Olney, A. M. (2007). Latent semantic grammar induction: Context, projectivity, and prior distributions. In R. Dragomir & R. Mihalcea (Eds.), Proceedings of TextGraphs-2: Graph-based algorithms for natural language processing (pp. 45–52). Rochester, NY: Association for Computational Linguistics.

    Google Scholar 

  • Ong, A. D., & van Dulmen, M. H. M. (2006). Oxford handbook of methods in positive psychology. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Orlov, Y. K. (1983). Ein Model der Häufigekeitsstruktur des Vokabulars. In H. Guiter & M. V. Arapov (Eds.), Studies on Zipf’s law (pp. 154–233). Bochum: Brockmeyer.

    Google Scholar 

  • Owen, A. J., & Leonard, L. B. (2002). Lexical diversity in the spontaneous speech of children with specific language impairment: Application of D. Journal of Speech & Hearing Research, 45, 927–937.

    Article  Google Scholar 

  • Silverman, S. W., & Bernstein Ratner, N. (2000). Word frequency distributions and type-token characteristics. Mathematical Scientist, 11, 45–72.

    Google Scholar 

  • Somers, H. H. (1966). Statistical methods in literary analysis. In J. Leeds (Ed.), The computer and literary style (pp. 128–140). Kent, OH: Kent State University.

    Google Scholar 

  • Templin, M. (1957). Certain language skills in children. Minneapolis: University of Minnesota Press.

    Book  Google Scholar 

  • Tuldava, J. (1993). The statistical structure of a text and its readability. In L. Hrebícek & G. Altmann (Eds.), Quantitative text analysis (pp. 215–227). Trier: Wissenschaftlicher Verlag.

    Google Scholar 

  • Tweedie, F. J., & Baayen, R. H. (1998). How variable may a constant be? Measures of lexical richness in perspective. Computers & the Humanities, 32, 323–352.

    Article  Google Scholar 

  • Van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York: Academic Press.

    Google Scholar 

  • Wu, T. (1993). An accurate computation of the hypergeometric distribution function. ACM Transactions on Mathematical Software, 19, 33–43.

    Article  Google Scholar 

  • Yule, G. U. (1944). The statistical study of literary vocabulary. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. McCarthy.

Additional information

This research was supported in part by the Institute for Education Sciences (IES; Grants R305GA080589, R305G020018-02, and R305G040046) and in part by the National Science Foundation (NSF; Grant IIS-0735682). The views expressed in this article do not necessarily reflect the views of the IES or the NSF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, P.M., Jarvis, S. MTLD, vocd-D, and HD-D: A validation study of sophisticated approaches to lexical diversity assessment. Behavior Research Methods 42, 381–392 (2010). https://doi.org/10.3758/BRM.42.2.381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BRM.42.2.381

Keywords