This issue
Previous Article
Complex network pinning control based On DR algorithm
Next Article
Asymptotically deferred statistical equivalent functions of order $ \alpha $ in amenable semigroups
On the density of translation networks defined on the unit ball
-
Abstract
We call a translation function class a set of zonal translation networks if it is produced by the translations of a convolutional structure, which is a composite function reunited with an even function defined on $ [-1, 1] $ and a geodesic distance. In the present paper, we consider the density of a class of zonal translation networks produced by a convolution structure on the unit ball from the view of Fourier-Laplace series and give a sufficient condition to ensure the zonal translation class is density in $ L^p $ spaces defined on the unit ball. In particular, we construct with De La Vallée Poussin operators a sequence of zonal translation networks and show the approximation order.
-
Keywords:
- Convolutional structure on the unit ball,
- Jacobi orthogonal polynomials,
- zonal translations,
- Fourier-Laplace series,
- density.
Mathematics Subject Classification: 68Q32, 68T05.Citation: -
References
[1] R. Askey, Mean convergence of orthogonal series and Lagrange interpolation, Acta Math. Acad. Sci. Hungar., 23 (1972), 71-85. doi: 10.1007/BF01889904. [2] R. Askey and S. Wainger, A convolution structure for Jacobi series, Amer. J. Math., 91 (1969), 463-485. doi: 10.2307/2373520. [3] K. Avazov, A. Abdusalomov, M. Mukhiddinov, N. Baratov, F. Makhmudov and Y. I. Cho, An improvement for the automatic classification method for ultrasound images used on CNN, Int. J. Wavelets Multi.Inform.Proc., 20 (2022), 2150054, 19 pp. [4] G. Brown and F. Dai, Approximation of smooth functions on compact two-point homogeneous spaces, J. Funct. Anal., 220 (2005), 401-423. doi: 10.1016/j.jfa.2004.10.005. [5] T. P. Chen and H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical system, IEEE Transactions on Neural Networks, 6 (1995), 911-917. doi: 10.1109/72.392253. [6] W. Chen and Z. Ditzian, Best approximation and $K$-functionals, Acta Math. Hungar., 75 (1997), 165-208. doi: 10.1023/A:1006543020828. [7] Z. X. Chen and F. L. Cao, The approximation operators with sigmoidal functions, Comput. Math. Appl., 58 (2009), 758-765. doi: 10.1016/j.camwa.2009.05.001. [8] W. Cheney and W. Light, A Course in Approximation Theory, Graduate Studies in Mathematics, 101. American Mathematical Society, Providence, RI, 2009. doi: 10.1090/gsm/101. [9] C. K. Chui and X. Li, Approximation by ridge functions and neural networks with one hidden layer, J. Approx. Theory, 70 (1992), 131-141. doi: 10.1016/0021-9045(92)90081-X. [10] G. Cybenko, Approximation by superpositions of sigmoidal function, Mathematics of Control, Signals, and Systems, 2 (1989), 303-314. doi: 10.1007/BF02551274. [11] F. Dai, Multivariate polynomial inequalities with respct to doubling weights and $A_{\infty}$ weights, J. Funct. Anal., 235 (2006), 137-170. doi: 10.1016/j.jfa.2005.09.009. [12] F. Dai and Y. Xu, Approximation Theory and Harmonic Analysis on Spheres and Balls, Springer Monographs in Mathematics, Springer, New York, 2013. doi: 10.1007/978-1-4614-6660-4. [13] Z. Y. Fang, H. Feng, S. Huang and D. X. Zhou, Theory of deep convolutional neural networks II: Spherical analysis, Neural Networks, 131 (2020), 154-162. doi: 10.1016/j.neunet.2020.07.029. [14] H. Feng, S. Huang and D. X. Zhou, Generalization analysis of CNNs for classification on spheres, IEEE Trans. Neural Netw. Learn. Syst., (2021). doi: 10.1109/TNNLS.2021.3134675. [15] S. B. Lin, F. L. Cao and Z. B. Xu, Essential rate for approximation by spherical neural networks, Neural Networks, 24 (2011), 752-758. doi: 10.1016/j.neunet.2011.04.005. [16] D. S. Lubinsky and V. Totik, Best weighted polynomial approximation via Jacobi expansions, SIAM J. Math. Anal., 25 (1994), 555-570. doi: 10.1137/S0036141092232907. [17] T. Mao, Z. J. Shi and D. X. Zhou, Theory of deep convolutional neural networks III: Approximating radial functions, Neural Networks, 144 (2021), 778-790. doi: 10.1016/j.neunet.2021.09.027. [18] H. N. Mhaskar and C. A. Micchelli, Approximation by superposition of sigmoidal and radial basis functions, Adv. Applied Math., 13 (1992), 350-373. doi: 10.1016/0196-8858(92)90016-P. [19] H. N. Mhaskar and C. A. Micchelli, Degree of approximation by neural and translation networks with single hidden layer, Adv. Applied Math., 16 (1995), 151-183. doi: 10.1006/aama.1995.1008. [20] H. N. Mhaskar, F. J. Narcowich and J. D. Ward, Approximation properties of zonal function networks using scattered data on the sphere, Adv. Comput. Math., 11 (1999), 121-137. doi: 10.1023/A:1018967708053. [21] S. Pawelke, Ein satz vom Jacksonschen typ für algebraische polynome, Acta Sci. Math.(Szeged), 33 (1972), 323-336. [22] P. Petrushev and Y. Xu, Localized polynomial frames on the ball, Constr. Approx., 27 (2008), 121-148. doi: 10.1007/s00365-007-0678-9. [23] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numerica, 8 (1999), 143-195. doi: 10.1017/S0962492900002919. [24] B. H. Sheng, On approximation by reproducing kernel spaces in weighted $L^p$-spaces, J. Syst. Sci. Complex., 20 (2007), 623-638. doi: 10.1007/s11424-007-9061-y. [25] B. H. Sheng, J. L. Wang and S. P. Zhou, A way of constructing spherical zonal translation network operators with linear bounded operators, Taiwanese J. Math., 12 (2008), 89-104. doi: 10.11650/twjm/1500602490. [26] B. H. Sheng and C. P. Zhang, An application of Bernstein-Durrmeyer operators, Anal. Theory Appl., 23 (2007), 16-25. doi: 10.1007/s10496-001-0016-1. [27] H. P. Wang and H. W. Huang, Widths of weighted Sobolev classes on the ball, J. Approx. Theory, 154 (2008), 126-139. doi: 10.1016/j.jat.2008.10.001. [28] H. P. Wang and X. B. Zhai, Best approximation of functions on the ball on the weighted Sobolev space equipped with a Gaussian measure, J. Approx.Theory, 162 (2010), 1160-1177. doi: 10.1016/j.jat.2009.12.004. [29] K. Y. Wang and L. Q. Li, Harmonic Analysis and Approximation on the Unit Sphere, Science Press, Bejing, 2000. [30] T. F. Xie and F. L. Cao, The errors of simultaneous approximation of multivariate functions by neural networks, Comput. Math. Appl., 61 (2011), 3146-3152. doi: 10.1016/j.camwa.2011.03.105. [31] Y. Xu, Summability of Fourier orthogonal series for Jacobi weight on a ball in $R^d$, Trans. Amer. Math. Soc., 351 (1999), 2439-2458. doi: 10.1090/S0002-9947-99-02225-4. [32] Y. Xu, Analysis on the unit ball and on the simplex, Electronic Trans.Number Anal., 25 (2006), 284-301. [33] Y. Xu, Best polynomial approximation on the unit sphere and the unit ball, Approximation theory XIV: San Antonio, Springer-Verlag, Berlin, 83 (2013), 357-375. doi: 10.1007/978-3-319-06404-8_22. [34] Y. Xu, Weighted approximation of functions on the unit sphere, Constr. Approx., 21 (2005), 1-28. doi: 10.1007/s00365-003-0542-5. [35] Y. Xu, Generalized translation operator and approximation in several variables, J. Comp. Applied Math., 178 (2005), 489-512. doi: 10.1016/j.cam.2004.02.029. [36] Y. S. Xu and H. Z. Zhang, Convergence of deep convolutional neural networks, Neural Networks, 153 (2022), 553-563. doi: 10.1016/j.neunet.2022.06.031. [37] Z. B. Xu and F. L. Cao, The essential order of approximation for neural networks, Science in China, Ser.F, Information Science, 47 (2004), 97-112. doi: 10.1360/02yf0221. [38] D. S. Yu, Approximation by neural networks with sigmoidal functions, Acta Math. Sinica, Engish Series, 29 (2013), 2013-2026. doi: 10.1007/s10114-013-1730-2. [39] D.X. Zhou, Deep distributed convolutional neural networks: Universality, Anal. Appl., 16 (2018), 895-919. doi: 10.1142/S0219530518500124. [40] D.X. Zhou, Universality of deep convolutional neural networks, Appl. Comput. Harm. Anal., 48 (2020), 787-794. doi: 10.1016/j.acha.2019.06.004. [41] D.X. Zhou, Theory of deep convolutional neural networks: Ownsampling, Neural Networks, 124 (2020), 319-327. doi: 10.1016/j.neunet.2020.01.018. [42] G. Z. Zhou and B. H. Sheng, On approximation by a kind of network spherical zonal translation operator (in Chinese), Acta Math., 25A (2005), 269-276. -
Access History