A solution of TSP based on the ant colony algorithm improved by particle swarm optimization
-
Abstract
TSP is a classic problem in the field of logistics, and ant colony algorithm is an important way to solve the problem. However, the ant colony algorithm has some shortcomings in practical application. In this paper, the ant colony algorithm is improved by particle swarm optimization algorithm, and the ant colony algorithm is obtained by giving the ant colony a certain ''particle property''. Finally, an example is given to demonstrate the effectiveness of the improved ant colony algorithm.
-
Keywords:
- TSP,
- improved ant colony algorithm,
- particle swarm optimization.
Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.Citation: -
-
Table 1. Observations' latitude and longitude
Number City Longitude latitude 1 Zhengzhou 113.63E 34.75N 2 Anyang 114.4E 36.1N 3 Hebi 114.3E 35.75N 4 Jiaozuo 113.25E 35.22N 5 Kaifeng 114.32E 34.8N 6 Luohe 114.02E 33.59N 7 Luoyang 112.46E 34.63N 8 Nanyang 112.54E 33N 9 Pingdingshan 113.2E 33.77N 10 Puyang 115.04E 35.77N 11 Sanmenxia 111.21E 34.78N 12 Shangqiu 115.66E 34.42N 13 Xinxiang 113.93E 35.31N 14 Xinyang 114.1E 32.15N 15 Xuchang 113.86E 34.04N 16 Zhoukou 114.7E 33.63N 17 Zhumadian 113.03E 33.02N -
References
[1] Y. An, Application of linear programming theory to strengthen the cost control of engineering project Railway engineering cost management, 2013. [2] G. Barbarosoglu and D. Ozgur, A tabu seacrh algorithm for the vehiciel routing problem, Computers & Operations Reseacrh, 26 (1999), 255-270. doi: 10.1016/S0305-0548(98)00047-1. [3] M. L. Bech and E. Atalay, The topology of the federal funds market, Physica A: Statistical Mechanics and its Applications, 389 (2010), 5223-5246. https://www.sciencedirect.com/science/article/pii/S0378437110004887. [4] I. Ciornei and E. Kyriakides, Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42 (2012), 234-245. https://ieeexplore.ieee.org/document/6008671. [5] M. Dorigo, V. Maniezzo and A. Colorni, Positive feedback as a Search Strategy, Technical Report, 1991, 91-106. https://www.researchgate.net/publication/2573263_Positive_Feedback_as_a_Search_Strategy. [6] M. Dorigo and L. M. Gambardella, Ant colony system: A cooperative learning approach to the traveling salesman problem, IEEE Transactions on Evolutionary Computation 1997, 1(1): 53-66. https://ieeexplore.ieee.org/abstract/document/585892. [7] H. Hernández and C. Blum, Foundations of antcycle: Self-synchronized duty-cycling in mobile sensor networks, Computer Journal, 54 (2011), 1427-1448. https://ieeexplore.ieee.org/document/8130483. [8] S. Kirkpatrick1, C. D. Gelatt Jr. and M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671-680. doi: 10.1126/science.220.4598.671. [9] F. Liu, S. Zhao, M. Weng and Y. Liu, Fire risk assessment for large-scale commercial buildings based on structure entropy weight method, Safety Sci., 94 (2017), 26-40. https://www.sciencedirect.com/science/article/pii/S0925753516306531?via. [10] Y. Z. Liu and Z. P. Fan, Multiple attribute decision making considering attribute aspirations: A method based on prospect theory, Kongzhi Yu Juece/control & Decision, 30 (2015), 91-97. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KZYC201501017.htm. [11] L. Liu, T. Zhang and B. Ru, A flying qualities assessment model based on multiparameter integration, Computer Engineering and Science, 38 (2016), 1262-1268. https://www.sciencedirect.com/science/article/pii/S1389041718302365. [12] S. C. Nicolis and J. L. Deneubourg, Emerging patterns and food recruitment in ants: An analytical study, Journal of Theoretical Biology, 198 (1999), 575-592. https://www.sciencedirect.com/science/article/pii/S0022519399909347. [13] M. W. P. Savelsbergh, Local search in routing problems with time windows, Annals of Operations Research, 4 (1985), 285-305. doi: 10.1007/BF02022044. [14] L. Santos, J. Coutinho-Rodrigues and J. R. Current, An improved ant colony optimization based algorithm for the capacitated arc routing problem, Transportation Research Part B: Methodological, 44 2010,246-266. https://www.sciencedirect.com/science/article/pii/S0191261509000836. [15] T. Stützle and H. H. Hoos, MAX-MIN ant system, Future Generation Computer Systems, 16 (2000), 889-914. https://www.sciencedirect.com/science/article/pii/S0167739X00000431. [16] M. Yu, S. Li, M Kong, J. Song and G. Ren, Comparison of advantages and disadvantages among various algorithms in logisticspath designTaking H-group as an example, Cognitive Systems Research, 52(2018) 843-852. https://www.sciencedirect.com/science/article/pii/S1389041718302365. doi: 10.1016/j.cogsys.2018.08.014. [17] M. Yu, J. Song, D. Zhao and G. Ren, Management of expressway service area based on integrated optimization, Cognitive Systems Research, 52 (2018) 875-881. https://www.sciencedirect.com/science/article/pii/S1389041718302390. doi: 10.1016/j.cogsys.2018.08.013. [18] Z. Zhang, Y. Shi and G. Gao, A rough set-based multiple criteria linear programming approach for the medical diagnosis and prognosis, Expert Systems with Applications, 36 (2009), 8932-8937.https://www.semanticscholar.org/paper/A-rough-set-based-multiple-criteria-linear-approach-Zhang-Shi/73209c1d7bc7051a4cd64c059d0edf2cfad86840. doi: 10.1016/j.eswa.2008.11.007. [19] S. Zhou, C. Hu and X. Qiao, et al., A forecasting method for Chinese civil planes attendance rate based on vague sets. Chaos Solitons & Fractals the Interdisciplinary Journal of Nonlinear Science & Nonequilibrium & Complex Phenomena, 89 (2016), 518-526. https://www.sciencedirect.com/science/article/pii/S0960077916300649?via. [20] S. Zhou, W. Liu and W. Chang, An improved TOPSIS with weighted hesitant vague information, Chaos Solitons & Fractals the Interdisciplinary Journal of Nonlinear Science & Nonequilibrium & Complex Phenomena, 89 (2016), 47-53. https://www.sciencedirect.com/science/article/pii/S0960077915002970. -
Access History

-
Figure 1.
The flow chart of improved ant colony algorithm
-
Figure 2.
The simulation results of the basic ant colony algorithm
-
Figure 3.
The simulation results of the improved ant colony algorithm